Supervised kernel locality preserving projections for face recognition
文献类型:期刊论文
作者 | Cheng, J![]() ![]() |
刊名 | NEUROCOMPUTING
![]() |
出版日期 | 2005-08-01 |
卷号 | 67页码:443-449 |
关键词 | kernel trick subspace analysis locality preserving projection face recognition |
英文摘要 | Subspace analysis is an effective approach for face recognition. Finding a suitable low-dimensional subspace is a key step of subspace analysis, for it has a direct effect on recognition performance. In this paper, a novel subspace method, named supervised kernel locality preserving projections (SKLPP), is proposed for face recognition, in which geometric relations are preserved according to prior class-label information and complex nonlinear variations of real face images are represented by nonlinear kernel mapping. SKLPP cannot only gain a perfect approximation of face manifold, but also enhance local within-class relations. Experimental results show that the proposed method can improve face recognition performance. (c) 2005 Elsevier B.V. All rights reserved. |
WOS标题词 | Science & Technology ; Technology |
类目[WOS] | Computer Science, Artificial Intelligence |
研究领域[WOS] | Computer Science |
关键词[WOS] | NONLINEAR DIMENSIONALITY REDUCTION |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000231436300032 |
公开日期 | 2015-12-24 |
源URL | [http://ir.ia.ac.cn/handle/173211/9067] ![]() |
专题 | 自动化研究所_09年以前成果 |
作者单位 | Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Cheng, J,Liu, QS,Lu, HQ,et al. Supervised kernel locality preserving projections for face recognition[J]. NEUROCOMPUTING,2005,67:443-449. |
APA | Cheng, J,Liu, QS,Lu, HQ,&Chen, YW.(2005).Supervised kernel locality preserving projections for face recognition.NEUROCOMPUTING,67,443-449. |
MLA | Cheng, J,et al."Supervised kernel locality preserving projections for face recognition".NEUROCOMPUTING 67(2005):443-449. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。