中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Supervised kernel locality preserving projections for face recognition

文献类型:期刊论文

作者Cheng, J; Liu, QS; Lu, HQ; Chen, YW
刊名NEUROCOMPUTING
出版日期2005-08-01
卷号67页码:443-449
关键词kernel trick subspace analysis locality preserving projection face recognition
英文摘要Subspace analysis is an effective approach for face recognition. Finding a suitable low-dimensional subspace is a key step of subspace analysis, for it has a direct effect on recognition performance. In this paper, a novel subspace method, named supervised kernel locality preserving projections (SKLPP), is proposed for face recognition, in which geometric relations are preserved according to prior class-label information and complex nonlinear variations of real face images are represented by nonlinear kernel mapping. SKLPP cannot only gain a perfect approximation of face manifold, but also enhance local within-class relations. Experimental results show that the proposed method can improve face recognition performance. (c) 2005 Elsevier B.V. All rights reserved.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence
研究领域[WOS]Computer Science
关键词[WOS]NONLINEAR DIMENSIONALITY REDUCTION
收录类别SCI
语种英语
WOS记录号WOS:000231436300032
公开日期2015-12-24
源URL[http://ir.ia.ac.cn/handle/173211/9067]  
专题自动化研究所_09年以前成果
作者单位Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Cheng, J,Liu, QS,Lu, HQ,et al. Supervised kernel locality preserving projections for face recognition[J]. NEUROCOMPUTING,2005,67:443-449.
APA Cheng, J,Liu, QS,Lu, HQ,&Chen, YW.(2005).Supervised kernel locality preserving projections for face recognition.NEUROCOMPUTING,67,443-449.
MLA Cheng, J,et al."Supervised kernel locality preserving projections for face recognition".NEUROCOMPUTING 67(2005):443-449.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。