"Rule plus exception" strategies for knowledge management and discovery
文献类型:期刊论文
作者 | Yao, YY; Wang, FY![]() |
刊名 | ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, PT 2, PROCEEDINGS
![]() |
出版日期 | 2005 |
卷号 | 3642页码:69-78 |
英文摘要 | A common practice of human learning and knowledge management is to use general rules, exception rules, and exceptions to rules. One of the crucial issues is to find a right mixture of them. For discovering this type of knowledge, we consider "rule + exception", or rule-plus-exception, strategies. Results from psychology, expert systems, genetic algorithms, and machine learning and data mining are summarized and compared, and their implications to knowledge management and discovery are examined. The study motivates and establishes a basis for the design and implementation of new algorithms for the discovery of "rule + exception" type knowledge. |
WOS标题词 | Science & Technology ; Technology |
类目[WOS] | Computer Science, Artificial Intelligence |
研究领域[WOS] | Computer Science |
关键词[WOS] | MODEL |
收录类别 | ISTP ; SCI |
语种 | 英语 |
WOS记录号 | WOS:000232190100008 |
公开日期 | 2015-12-24 |
源URL | [http://ir.ia.ac.cn/handle/173211/9092] ![]() |
专题 | 自动化研究所_09年以前成果 |
作者单位 | 1.Univ Regina, Dept Comp Sci, Regina, SK S4S 0A2, Canada 2.Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ 85721 USA 3.Chinese Acad Sci, Inst Automat, Beijing 10080, Peoples R China |
推荐引用方式 GB/T 7714 | Yao, YY,Wang, FY,Wang, J,et al. "Rule plus exception" strategies for knowledge management and discovery[J]. ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, PT 2, PROCEEDINGS,2005,3642:69-78. |
APA | Yao, YY.,Wang, FY.,Wang, J.,Slezak, D.,Yao, JT.,...&Hu, X.(2005)."Rule plus exception" strategies for knowledge management and discovery.ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, PT 2, PROCEEDINGS,3642,69-78. |
MLA | Yao, YY,et al.""Rule plus exception" strategies for knowledge management and discovery".ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, PT 2, PROCEEDINGS 3642(2005):69-78. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。