A new learning algorithm based on lever principle
文献类型:期刊论文
作者 | He, XG; Tian, J![]() ![]() ![]() ![]() |
刊名 | ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS
![]() |
出版日期 | 2005 |
卷号 | 3610期号:2005页码:187-198 |
关键词 | Lever Principle |
通讯作者 | Tian, Jie |
英文摘要 | In this paper a new learning algorithm, Lever Training Machine (LTM), is presented for binary classification. LTM is a supervised leaming algorithm and its main idea is inspired from a physics principle: Lever Principle. Figuratively, LTM involves rolling a hyper-plane around the convex hull of the target training set, and using the equilibrium position of the hyper-plane to define a decision surfaces. In theory, the optimal goal of LTM is to maximize the correct rejection rate. If the distribution of target set is convex, a set of such decision surfaces can be trained for exact discrimination without false alarm. Two mathernatic experiments and the practical application of face detection confirm that LTM is an effective leaming algorithm. |
WOS标题词 | Science & Technology ; Technology |
类目[WOS] | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods |
研究领域[WOS] | Computer Science |
关键词[WOS] | FACE DETECTION ; FEATURES |
收录类别 | SCI ; ISTP |
语种 | 英语 |
WOS记录号 | WOS:000232222400021 |
源URL | [http://ir.ia.ac.cn/handle/173211/9141] ![]() |
专题 | 自动化研究所_09年以前成果 |
通讯作者 | Tian, Jie |
作者单位 | Chinese Acad Sci, Grad Sch, Key Lab Complex Syst & Intelligence Sci, Ctr Biometr & Secur Res,Inst Automat, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | He, XG,Tian, J,Yang, X,et al. A new learning algorithm based on lever principle[J]. ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS,2005,3610(2005):187-198. |
APA | He, XG.,Tian, J.,Yang, X.,Wang, L.,Chen, K.,...&Tian, Jie.(2005).A new learning algorithm based on lever principle.ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS,3610(2005),187-198. |
MLA | He, XG,et al."A new learning algorithm based on lever principle".ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS 3610.2005(2005):187-198. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。