Multiple similarities based kernel subspace learning for image classification
文献类型:期刊论文
作者 | Yan, W; Liu, QS; Lu, HQ![]() ![]() |
刊名 | COMPUTER VISION - ACCV 2006, PT II
![]() |
出版日期 | 2006 |
卷号 | 3852页码:244-253 |
英文摘要 | In this paper, we propose a new method for image classification, in which matrix based kernel features are designed to capture the multiple similarities between images in different low-level visual cues. Based on the property that dot product kernel can be regarded as a similarity measure, we apply kernel functions to different low-level visual features respectively to measure the similarities between two images, and obtain a kernel feature matrix for each image. In order to deal with the problems of over fitting and numerical computation, a revised version of Two-Dimensional PCA algorithm is developed to learn intrinsic subspace of matrix features for classification. Extensive experiments on the Corel database show the advantage of the proposed method. |
WOS标题词 | Science & Technology ; Technology |
类目[WOS] | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods |
研究领域[WOS] | Computer Science |
关键词[WOS] | HUMAN FACES |
收录类别 | ISTP ; SCI |
语种 | 英语 |
WOS记录号 | WOS:000235773200025 |
公开日期 | 2015-12-24 |
源URL | [http://ir.ia.ac.cn/handle/173211/9229] ![]() |
专题 | 自动化研究所_09年以前成果 |
作者单位 | Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Yan, W,Liu, QS,Lu, HQ,et al. Multiple similarities based kernel subspace learning for image classification[J]. COMPUTER VISION - ACCV 2006, PT II,2006,3852:244-253. |
APA | Yan, W.,Liu, QS.,Lu, HQ.,Ma, SD.,Narayanan, PJ.,...&Shum, HY.(2006).Multiple similarities based kernel subspace learning for image classification.COMPUTER VISION - ACCV 2006, PT II,3852,244-253. |
MLA | Yan, W,et al."Multiple similarities based kernel subspace learning for image classification".COMPUTER VISION - ACCV 2006, PT II 3852(2006):244-253. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。