Gain field correction fast fuzzy c-means algorithm for segmenting magnetic resonance images
文献类型:期刊论文
作者 | Song, Jingjing; Zhao, Qingjie; Wang, Yuanquan; Tian, Jie![]() ![]() |
刊名 | PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS
![]() |
出版日期 | 2006 |
卷号 | 4099期号:2006页码:1242-1247 |
关键词 | Gain Field Correction Segmenting Magnetic Resonance Images c-Means |
通讯作者 | Tian, Jie |
英文摘要 | In this paper, we present a new and fast algorithm of fuzzy segmentation for MR image, which is corrupted by the intensity inhomogeneity. The algorithm is formulated by modifying the FFCM algorithm to incorporate a gain field, which compensate for such inhomogeneities. In each iteration, we allow the gain field transforming to a gain field image and filter it using an iterative low-pass filter, and then revert the gain field image to gain field term again for the next iteration. We also use c-means algorithm initializing the centroids to further accelerate our algorithm. Our method reduces lots of executive time and will obtain a high-quality result. The efficiency of the algorithm is demonstrated on different magnetic resonance images. |
WOS标题词 | Science & Technology ; Technology |
类目[WOS] | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods |
研究领域[WOS] | Computer Science |
关键词[WOS] | MRI DATA ; SEGMENTATION |
收录类别 | SCI ; ISTP |
语种 | 英语 |
WOS记录号 | WOS:000240091500169 |
源URL | [http://ir.ia.ac.cn/handle/173211/9293] ![]() |
专题 | 自动化研究所_09年以前成果 |
作者单位 | 1.Beijing Inst Technol, Dept Comp Sci & Engn, Beijing 100081, Peoples R China 2.Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Song, Jingjing,Zhao, Qingjie,Wang, Yuanquan,et al. Gain field correction fast fuzzy c-means algorithm for segmenting magnetic resonance images[J]. PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS,2006,4099(2006):1242-1247. |
APA | Song, Jingjing,Zhao, Qingjie,Wang, Yuanquan,Tian, Jie,Yang, Q,&Webb, G.(2006).Gain field correction fast fuzzy c-means algorithm for segmenting magnetic resonance images.PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS,4099(2006),1242-1247. |
MLA | Song, Jingjing,et al."Gain field correction fast fuzzy c-means algorithm for segmenting magnetic resonance images".PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS 4099.2006(2006):1242-1247. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。