中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Gain field correction fast fuzzy c-means algorithm for segmenting magnetic resonance images

文献类型:期刊论文

作者Song, Jingjing; Zhao, Qingjie; Wang, Yuanquan; Tian, Jie; Yang, Q; Webb, G
刊名PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS
出版日期2006
卷号4099期号:2006页码:1242-1247
关键词Gain Field Correction Segmenting Magnetic Resonance Images c-Means
通讯作者Tian, Jie
英文摘要In this paper, we present a new and fast algorithm of fuzzy segmentation for MR image, which is corrupted by the intensity inhomogeneity. The algorithm is formulated by modifying the FFCM algorithm to incorporate a gain field, which compensate for such inhomogeneities. In each iteration, we allow the gain field transforming to a gain field image and filter it using an iterative low-pass filter, and then revert the gain field image to gain field term again for the next iteration. We also use c-means algorithm initializing the centroids to further accelerate our algorithm. Our method reduces lots of executive time and will obtain a high-quality result. The efficiency of the algorithm is demonstrated on different magnetic resonance images.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
研究领域[WOS]Computer Science
关键词[WOS]MRI DATA ; SEGMENTATION
收录类别SCI ; ISTP
语种英语
WOS记录号WOS:000240091500169
源URL[http://ir.ia.ac.cn/handle/173211/9293]  
专题自动化研究所_09年以前成果
作者单位1.Beijing Inst Technol, Dept Comp Sci & Engn, Beijing 100081, Peoples R China
2.Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Song, Jingjing,Zhao, Qingjie,Wang, Yuanquan,et al. Gain field correction fast fuzzy c-means algorithm for segmenting magnetic resonance images[J]. PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS,2006,4099(2006):1242-1247.
APA Song, Jingjing,Zhao, Qingjie,Wang, Yuanquan,Tian, Jie,Yang, Q,&Webb, G.(2006).Gain field correction fast fuzzy c-means algorithm for segmenting magnetic resonance images.PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS,4099(2006),1242-1247.
MLA Song, Jingjing,et al."Gain field correction fast fuzzy c-means algorithm for segmenting magnetic resonance images".PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS 4099.2006(2006):1242-1247.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。