中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Accelerated convergence using dynamic mean shift

文献类型:期刊论文

作者Zhang, K; Kwok, JT; Tang, M; Leonardis, A; Bischof, H; Pinz, A
刊名COMPUTER VISION - ECCV 2006, PT 2, PROCEEDINGS
出版日期2006
卷号3952页码:257-268
英文摘要Mean shift is an iterative mode-seeking algorithm widely used in pattern recognition and computer vision. However, its convergence is sometimes too slow to be practical. In this paper, we improve the convergence speed of mean shift by dynamically updating the sample set during the iterations, and the resultant procedure is called dynamic mean shift (DMS). When the data is locally Gaussian, it can be shown that both the standard and dynamic mean shift algorithms converge to the same optimal solution. However, while standard mean shift only has linear convergence, the dynamic mean shift algorithm has superlinear convergence. Experiments on color image segmentation show that dynamic mean shift produces comparable results as the standard mean shift algorithm, but can significantly reduce the number of iterations for convergence and takes much less time.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
研究领域[WOS]Computer Science
收录类别ISTP ; SCI
语种英语
WOS记录号WOS:000237555200020
公开日期2015-12-24
源URL[http://ir.ia.ac.cn/handle/173211/9341]  
专题自动化研究所_09年以前成果
作者单位1.Hong Kong Univ Sci & Technol, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Zhang, K,Kwok, JT,Tang, M,et al. Accelerated convergence using dynamic mean shift[J]. COMPUTER VISION - ECCV 2006, PT 2, PROCEEDINGS,2006,3952:257-268.
APA Zhang, K,Kwok, JT,Tang, M,Leonardis, A,Bischof, H,&Pinz, A.(2006).Accelerated convergence using dynamic mean shift.COMPUTER VISION - ECCV 2006, PT 2, PROCEEDINGS,3952,257-268.
MLA Zhang, K,et al."Accelerated convergence using dynamic mean shift".COMPUTER VISION - ECCV 2006, PT 2, PROCEEDINGS 3952(2006):257-268.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。