中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Unified eigen analysis on multivariate Gaussian based estimation of distribution algorithms

文献类型:期刊论文

作者Dong, Weishan1; Yao, Xin2
刊名INFORMATION SCIENCES
出版日期2008-08-01
卷号178期号:15页码:3000-3023
关键词estimation of distribution algorithm eigen analysis multivariate Gaussian distribution covariance matrix scaling eigenvalue tuning
英文摘要Multivariate Gaussian models are widely adopted in continuous estimation of distribution algorithms (EDAs), and covariance matrix plays the essential role in guiding the evolution. In this paper, we propose a new framework for multivariate Gaussian based EDAs (MGEDAs), named eigen decomposition EDA (ED-EDA). Unlike classical EDAs, ED-EDA focuses on eigen analysis of the covariance matrix, and it explicitly tunes the eigenvalues. All existing MGEDAs can be unified within our ED-EDA framework by applying three different eigenvalue tuning strategies. The effects of eigenvalue on influencing the evolution are investigated through combining maximum likelihood estimates of Gaussian model with each of the eigenvalue tuning strategies in ED-EDA. In our experiments, proper eigenvalue tunings show high efficiency in solving problems with small population sizes, which are difficult for classical MGEDA adopting maximum likelihood estimates alone. Previously developed covariance matrix repairing (CMR) methods focusing on repairing computational errors of covariance matrix can be seen as a special eigenvalue tuning strategy. By using the ED-EDA framework, the computational time of CMR methods can be reduced from cubic to linear. Two new efficient CMR methods are proposed. Through explicitly tuning eigenvalues, ED-EDA provides a new approach to develop more efficient Gaussian based EDAs. (c) 2008 Elsevier Inc. All rights reserved.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Information Systems
研究领域[WOS]Computer Science
关键词[WOS]OPTIMIZATION
收录类别SCI
语种英语
WOS记录号WOS:000257404100003
公开日期2015-12-24
源URL[http://ir.ia.ac.cn/handle/173211/9656]  
专题自动化研究所_09年以前成果
作者单位1.Chinese Acad Sci, Inst Automat, Key Lab Complex Syst & Intelligence Sci, Beijing 100190, Peoples R China
2.Univ Birmingham, Sch Comp Sci, CERCIA, Birmingham B15 2TT, W Midlands, England
推荐引用方式
GB/T 7714
Dong, Weishan,Yao, Xin. Unified eigen analysis on multivariate Gaussian based estimation of distribution algorithms[J]. INFORMATION SCIENCES,2008,178(15):3000-3023.
APA Dong, Weishan,&Yao, Xin.(2008).Unified eigen analysis on multivariate Gaussian based estimation of distribution algorithms.INFORMATION SCIENCES,178(15),3000-3023.
MLA Dong, Weishan,et al."Unified eigen analysis on multivariate Gaussian based estimation of distribution algorithms".INFORMATION SCIENCES 178.15(2008):3000-3023.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。