中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A quasi-wavelet algorithm for second kind boundary integral equations

文献类型:期刊论文

作者Chen, HL; Peng, SL; Si-Long Peng
刊名ADVANCES IN COMPUTATIONAL MATHEMATICS
出版日期1999
卷号11期号:11页码:355–375
关键词periodic quasi-wavelet, integral equation, multiscale
通讯作者Si-Long Peng
英文摘要In solving integral equations with a logarithmic kernel, we combine the Galerkin approximation with periodic quasi-wavelet (PQW) [4]. We develop an algorithm for solving the integral equations with only O(N logN) arithmetic operations, where N is the number of knots. We also prove that the Galerkin approximation has a polynomial rate of convergence.
WOS标题词Science & Technology ; Physical Sciences
类目[WOS]Mathematics, Applied
研究领域[WOS]Mathematics
关键词[WOS]HELMHOLTZ-EQUATION ; NUMERICAL-SOLUTION
收录类别SCI
语种英语
WOS记录号WOS:000083861000005
源URL[http://ir.ia.ac.cn/handle/173211/9784]  
专题自动化研究所_09年以前成果
通讯作者Si-Long Peng
推荐引用方式
GB/T 7714
Chen, HL,Peng, SL,Si-Long Peng. A quasi-wavelet algorithm for second kind boundary integral equations[J]. ADVANCES IN COMPUTATIONAL MATHEMATICS,1999,11(11):355–375.
APA Chen, HL,Peng, SL,&Si-Long Peng.(1999).A quasi-wavelet algorithm for second kind boundary integral equations.ADVANCES IN COMPUTATIONAL MATHEMATICS,11(11),355–375.
MLA Chen, HL,et al."A quasi-wavelet algorithm for second kind boundary integral equations".ADVANCES IN COMPUTATIONAL MATHEMATICS 11.11(1999):355–375.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。