中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Bayesian learning, global competition and unsupervised image segmentation

文献类型:期刊论文

作者Guo, GD; Ma, SD
刊名PATTERN RECOGNITION LETTERS
出版日期2000-02-01
卷号21期号:2页码:107-116
关键词Bayesian learning global competition unsupervised image segmentation Markov random field parameter estimation
英文摘要A novel approach to unsupervised stochastic model-based image segmentation is presented and the problems of parameter estimation and image segmentation are formulated as Bayesian learning. In order to draw samples corresponding to different classes, a global competition strategy is adopted for label commitment based on the "powervalue" (PV) associated with each sample (or site). The smaller the value, the more powerful the sample to compete. Parameter estimation and image segmentation are executed in the same process. Bayesian modeling of images by Markov random fields (MRFs) makes it easy to represent the power of each site for competition. The new procedure to unsupervised image segmentation is performed on synthetic and real images to show its success. (C) 2000 Elsevier Science B.V. All rights reserved.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence
研究领域[WOS]Computer Science
收录类别SCI
语种英语
WOS记录号WOS:000085423600002
公开日期2015-12-24
源URL[http://ir.ia.ac.cn/handle/173211/9791]  
专题自动化研究所_09年以前成果
作者单位1.Nanyang Technol Univ, Sch Elect & Elect Engn, Intelligent Machine Res Lab, Singapore 639798, Singapore
2.CAS, NLPR, Inst Automat, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Guo, GD,Ma, SD. Bayesian learning, global competition and unsupervised image segmentation[J]. PATTERN RECOGNITION LETTERS,2000,21(2):107-116.
APA Guo, GD,&Ma, SD.(2000).Bayesian learning, global competition and unsupervised image segmentation.PATTERN RECOGNITION LETTERS,21(2),107-116.
MLA Guo, GD,et al."Bayesian learning, global competition and unsupervised image segmentation".PATTERN RECOGNITION LETTERS 21.2(2000):107-116.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。