Linear discriminant analysis using rotational invariant L-1 norm
文献类型:期刊论文
作者 | Li, Xi1,4; Hu, Weiming1![]() |
刊名 | NEUROCOMPUTING
![]() |
出版日期 | 2010-08-01 |
卷号 | 73期号:13-15页码:2571-2579 |
关键词 | Linear discriminant analysis Face classification R-1 norm |
英文摘要 | Linear discriminant analysis (LDA) is a well-known scheme for supervised subspace learning. It has been widely used in the applications of computer vision and pattern recognition. However, an intrinsic limitation of LDA is the sensitivity to the presence of outliers, due to using the Frobenius norm to measure the inter-class and intra-class distances. In this paper, we propose a novel rotational invariant L-1 norm (i.e., R-1 norm) based discriminant criterion (referred to as DCL1), which better characterizes the intra-class compactness and the inter-class separability by using the rotational invariant L-1 norm instead of the Frobenius norm. Based on the DCL1, three subspace learning algorithms (i.e., 1DL(1), 2DL(1), and TDL1) are developed for vector-based, matrix-based, and tensor-based representations of data, respectively. They are capable of reducing the influence of outliers substantially, resulting in a robust classification. Theoretical analysis and experimental evaluations demonstrate the promise and effectiveness of the proposed DCL1 and its algorithms. (C) 2010 Elsevier B.V. All rights reserved. |
WOS标题词 | Science & Technology ; Technology |
类目[WOS] | Computer Science, Artificial Intelligence |
研究领域[WOS] | Computer Science |
关键词[WOS] | FACE RECOGNITION |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000281612300030 |
公开日期 | 2015-12-24 |
源URL | [http://ir.ia.ac.cn/handle/173211/9728] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_视频内容安全团队 |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China 2.Univ Adelaide, Dept Comp Sci, Adelaide, SA 5005, Australia 3.SUNY Binghamton, Binghamton, NY 13902 USA 4.TELECOM ParisTech, CNRS, Paris, France |
推荐引用方式 GB/T 7714 | Li, Xi,Hu, Weiming,Wang, Hanzi,et al. Linear discriminant analysis using rotational invariant L-1 norm[J]. NEUROCOMPUTING,2010,73(13-15):2571-2579. |
APA | Li, Xi,Hu, Weiming,Wang, Hanzi,&Zhang, Zhongfei.(2010).Linear discriminant analysis using rotational invariant L-1 norm.NEUROCOMPUTING,73(13-15),2571-2579. |
MLA | Li, Xi,et al."Linear discriminant analysis using rotational invariant L-1 norm".NEUROCOMPUTING 73.13-15(2010):2571-2579. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。