中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Linear discriminant analysis using rotational invariant L-1 norm

文献类型:期刊论文

作者Li, Xi1,4; Hu, Weiming1; Wang, Hanzi2; Zhang, Zhongfei3
刊名NEUROCOMPUTING
出版日期2010-08-01
卷号73期号:13-15页码:2571-2579
关键词Linear discriminant analysis Face classification R-1 norm
英文摘要Linear discriminant analysis (LDA) is a well-known scheme for supervised subspace learning. It has been widely used in the applications of computer vision and pattern recognition. However, an intrinsic limitation of LDA is the sensitivity to the presence of outliers, due to using the Frobenius norm to measure the inter-class and intra-class distances. In this paper, we propose a novel rotational invariant L-1 norm (i.e., R-1 norm) based discriminant criterion (referred to as DCL1), which better characterizes the intra-class compactness and the inter-class separability by using the rotational invariant L-1 norm instead of the Frobenius norm. Based on the DCL1, three subspace learning algorithms (i.e., 1DL(1), 2DL(1), and TDL1) are developed for vector-based, matrix-based, and tensor-based representations of data, respectively. They are capable of reducing the influence of outliers substantially, resulting in a robust classification. Theoretical analysis and experimental evaluations demonstrate the promise and effectiveness of the proposed DCL1 and its algorithms. (C) 2010 Elsevier B.V. All rights reserved.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence
研究领域[WOS]Computer Science
关键词[WOS]FACE RECOGNITION
收录类别SCI
语种英语
WOS记录号WOS:000281612300030
公开日期2015-12-24
源URL[http://ir.ia.ac.cn/handle/173211/9728]  
专题自动化研究所_模式识别国家重点实验室_视频内容安全团队
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
2.Univ Adelaide, Dept Comp Sci, Adelaide, SA 5005, Australia
3.SUNY Binghamton, Binghamton, NY 13902 USA
4.TELECOM ParisTech, CNRS, Paris, France
推荐引用方式
GB/T 7714
Li, Xi,Hu, Weiming,Wang, Hanzi,et al. Linear discriminant analysis using rotational invariant L-1 norm[J]. NEUROCOMPUTING,2010,73(13-15):2571-2579.
APA Li, Xi,Hu, Weiming,Wang, Hanzi,&Zhang, Zhongfei.(2010).Linear discriminant analysis using rotational invariant L-1 norm.NEUROCOMPUTING,73(13-15),2571-2579.
MLA Li, Xi,et al."Linear discriminant analysis using rotational invariant L-1 norm".NEUROCOMPUTING 73.13-15(2010):2571-2579.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。