中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Robust Hyperspectral Unmixing With Correntropy-Based Metric

文献类型:期刊论文

作者Wang, Ying; Pan, Chunhong; Xiang, Shiming; Zhu, Feiyun
刊名IEEE TRANSACTIONS ON IMAGE PROCESSING
出版日期2015-11-01
卷号24期号:11页码:4027-4040
关键词Hyperspectral unmixing linear mixture model non-negative matrix factorization robust estimation correntropy based metric
英文摘要Hyperspectral unmixing is one of the crucial steps for many hyperspectral applications. The problem of hyperspectral unmixing has proved to be a difficult task in unsupervised work settings where the endmembers and abundances are both unknown. In addition, this task becomes more challenging in the case that the spectral bands are degraded by noise. This paper presents a robust model for unsupervised hyperspectral unmixing. Specifically, our model is developed with the correntropy-based metric where the nonnegative constraints on both endmembers and abundances are imposed to keep physical significance. Besides, a sparsity prior is explicitly formulated to constrain the distribution of the abundances of each endmember. To solve our model, a half-quadratic optimization technique is developed to convert the original complex optimization problem into an iteratively reweighted nonnegative matrix factorization with sparsity constraints. As a result, the optimization of our model can adaptively assign small weights to noisy bands and put more emphasis on noise-free bands. In addition, with sparsity constraints, our model can naturally generate sparse abundances. Experiments on synthetic and real data demonstrate the effectiveness of our model in comparison to the related state-of-the-art unmixing models.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
研究领域[WOS]Computer Science ; Engineering
关键词[WOS]NONNEGATIVE MATRIX FACTORIZATION ; HALF-QUADRATIC MINIMIZATION ; CONSTRAINED LEAST-SQUARES ; ENDMEMBER EXTRACTION ; IMAGERY ; ALGORITHMS ; SIGNAL ; REPRESENTATION ; MODEL
收录类别SCI
语种英语
WOS记录号WOS:000359563500002
公开日期2015-12-24
源URL[http://ir.ia.ac.cn/handle/173211/8915]  
专题自动化研究所_模式识别国家重点实验室_遥感图像处理团队
作者单位Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wang, Ying,Pan, Chunhong,Xiang, Shiming,et al. Robust Hyperspectral Unmixing With Correntropy-Based Metric[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2015,24(11):4027-4040.
APA Wang, Ying,Pan, Chunhong,Xiang, Shiming,&Zhu, Feiyun.(2015).Robust Hyperspectral Unmixing With Correntropy-Based Metric.IEEE TRANSACTIONS ON IMAGE PROCESSING,24(11),4027-4040.
MLA Wang, Ying,et al."Robust Hyperspectral Unmixing With Correntropy-Based Metric".IEEE TRANSACTIONS ON IMAGE PROCESSING 24.11(2015):4027-4040.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。