中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
肝脏ATP 柠檬酸裂解酶在小鼠糖代谢调控中的功能及其机制研究

文献类型:学位论文

作者王琼
学位类别博士
答辩日期2009-01
授予单位中国科学院上海生命科学研究院营养科学研究所
授予地点中国科学院上海生命科学研究院
导师刘勇
关键词ATP柠檬酸裂解酶 脂肪从头合成 脂肪肝 高血糖 胰岛素敏感性 极低密度脂蛋白
其他题名The metabolic functions of hepatic ATP-citrate lyase in db/db and WT mice
学位专业生物化学与分子生物学
中文摘要肝脏的脂肪变性是非酒精性脂肪肝形成的主要特征之一,它与肥胖相关的一系列代谢综合症,如脂肪异常分布,胰岛素抵抗以及高血糖症息息相关。脂肪从头合成是哺乳动物重要的代谢反应之一,主要发生在肝脏里,而脂肪从头合成的紊乱是否与脂肪肝及代谢综合症的发生、发展有着密切的机制联系,有待我们进一步的认知。ATP柠檬酸裂解酶 (ACL) 是一个位于细胞质中,连接着葡萄糖的降解与脂肪酸、胆固醇合成的关键代谢酶。ACL催化胞质内的柠檬酸产生乙酰辅酶A,乙酰辅酶A随后被催化产生脂肪酸合成的前体—丙二酸单酰辅酶A。瘦素受体缺陷小鼠 (db/db小鼠) 在成年后呈现严重的脂肪肝,高血糖以及胰岛素抵抗症状,是一个很好的研究代谢紊乱的动物模型。我们首先发现ACL在db/db小鼠肝脏中的表达异常升高,而在白色脂肪组织并没有显著变化,预示着ACL与db/db小鼠肝脏以及全身代谢紊乱的产生有着密切的联系。我们利用腺病毒介导的基因沉寂方法在小鼠肝脏中特异抑制了ACL的表达,发现db/db小鼠的脂肪肝现象明显改善,肝脏中脂滴几乎消失。进一步实验证明,抑制ACL后db/db小鼠肝脏中乙酰辅酶A以及丙二酸单酰辅酶A的含量显著降低,肝脏中的脂肪从头合成速率也大大降低。值得注意的是,抑制ACL后显著下调了肝脏中的PPAR表达量,同时,一系列脂肪合成通路上的代谢酶表达也显著下调。此外,在db/db小鼠肝脏中特异抑制ACL的表达,不但明显降低了肝脏中糖异生基因的表达,还在很大程度上改善了肌肉中的胰岛素敏感性。这些对糖代谢的影响导致在db/db小鼠肝脏中特异抑制ACL后血糖明显降低,葡萄糖耐受性增加。综上所述,我们的研究结果表明,ACL在糖脂代谢紊乱发生过程中起到了至关重要的作用,它是一个新的治疗脂肪肝以及高血糖的潜在药物靶点。 由于全身敲除ACL的小鼠是胚胎致死性的,ACL在正常小鼠肝脏中的生理学功能同样有待于研究。我们用腺病毒介导的基因沉寂特异抑制了小鼠肝脏中ACL的表达,以研究ACL活性降低对正常小鼠代谢平衡带来的影响。肝脏中抑制ACL的表达4周后,在进食高糖状态下,小鼠血液中的游离脂肪酸和甘油三脂含量均显著降低,而胆固醇的含量则没有变化。与血清中的结果相反,小鼠肝脏中的甘油三脂和胆固醇含量在ACL受到抑制后均有明显升高。进一步实验发现,肝脏中抑制ACL的表达可以逆转低糖高脂食物诱发的血清高甘油三脂症状,但依然会造成肝脏中甘油三脂含量上升。极低密度脂蛋白 (VLDL) 是肝脏向外周组织运送甘油三脂的运输工具,脂蛋白分形实验表明,抑制肝脏中的ACL能够大量降低血液中循环的VLDL。体内测定肝脏分泌甘油三脂速率的实验证明,血液中VLDL相关甘油三脂的减少是因为肝脏向外运输速率的减少导致,而不是缘于外周组织吸收速率的增加。综合以上野生型小鼠肝脏中ACL生理功能的研究结果,我们发现,ACL在维持正常小鼠肝脏中甘油三脂的储存和运输平衡中起到了至关重要的作用。
索取号D2009-165
英文摘要Hepatic steatosis is a hallmark of non-alcoholic fatty liver disease (NAFLD) and a key component of obesity-associated metabolic dysfunctions featuring dyslipidemia, insulin resistance and loss of glycemic control. It has yet to be completely understood how much dysregulated de novo lipogenesis contributes to the pathogenic development of hepatic steatosis and insulin resistance. ATP-citrate lyase (ACL) is a lipogenic enzyme that catalyzes the critical reaction linking cellular glucose catabolism and lipogenesis, converting cytosolic citrate to acetyl-CoA. Acetyl-CoA is further converted to malonyl-CoA, the essential precursor for fatty acid biosynthesis. Here we investigated whether dysregulation of hepatic ACL is metabolically connected to hepatic steatosis, insulin resistance and hyperglycemia. We found that in leptin receptor-deficient db/db mice, the expression of ACL was selectively elevated in the liver but not in the white adipose tissue. Liver-specific ACL abrogation via adenovirus-mediated RNA interference prominently reduced the hepatic contents of both acetyl-CoA and malonyl-CoA, markedly inhibited hepatic de novo lipogenesis, and protected against hepatic steatosis in db/db mice. Surprisingly, liver-specific ACL abrogation markedly inhibited the expression of PPAR and the entire lipogenic program in the liver. Moreover, hepatic ACL deficiency resulted in significantly downregulated expression of gluconeogenic genes in the liver as well as enhanced insulin sensitivity in the muscle, leading to substantially improved systemic glucose metabolism. Conclusion: These findings establish a crucial role of hepatic ACL in lipid and glucose metabolism; therefore, hepatic ACL may serve as a potential target to treat NAFLD and type 2 diabetes. Since knockout of the mouse ACL gene results in embryonic lethality, the physiological function of ACL in the liver remains largely unclear. Here we developed an adenovirus-mediated RNA interference in which short hairpin RNAs were used to inhibit ACL expression specifically in the liver. After 4 weeks of ACL inhibition, circulating triglycerides and free fatty acid were dramatically decreased, while little influence on circulating cholesterol were observed under both high carbohydrate low fat and low carbohydrate high fat diet feeding. However, suppression of ACL increased the hepatic contents of both triglyceride and cholesterol in WT mice. The decreased circulating triglyceride was mainly due to reduced VLDL content in the serum. More over, hepatic knockdown of ACL suppressed triglyceride output from the liver. Taken together, hepatic ACL is critical for maintaining the balance between hepatic lipid storage and transport.
语种中文
公开日期2015-12-24
源URL[http://202.127.25.144/handle/331004/313]  
专题中国科学院上海生命科学研究院营养科学研究所_糖脂代谢与调控研究组
推荐引用方式
GB/T 7714
王琼. 肝脏ATP 柠檬酸裂解酶在小鼠糖代谢调控中的功能及其机制研究[D]. 中国科学院上海生命科学研究院. 中国科学院上海生命科学研究院营养科学研究所. 2009.

入库方式: OAI收割

来源:上海营养与健康研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。