中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
最小化支持向量数分类器的云检测

文献类型:期刊论文

作者卞春江; 余翔宇; 候晴宇; 张伟
刊名红外与激光工程
出版日期2014
卷号43期号:6页码:1818-1822
关键词云检测 支持向量机 支持向量数 奇异值分解
ISSN号1007-2276
其他题名Cloud detection based on minimizing support vector count of SVM
中文摘要针对遥感卫星图像的云检测,提出了基于最小化支持向量数分类器的云检测方案,解决传统分类器训练样本多、易陷入局部最优的问题。使用该分类器对QuickBird高分辨率遥感图像进行云检测,检测正确率达99%以上。实验表明:在确定分类器内部结构参数过程中,与传统的交叉验证法相比,基于支持向量数的方法不仅能够准确预测分类器推广性能的变化趋势,从而确立最优化的参数组合,并且实现简单,大大减少了计算的复杂度。与传统的BP神经网络相比,该方法所需训练样本少,分类性能好。
英文摘要The classifier plays an important role for cloud detection in remote sensing image. Traditional Classifiers demand excessive training samples and have risks to fall into local optimum. To solve these deficiencies, SVM was presented as the classifier to achieve cloud detection based on SVD as feature vectors. Meanwhile, the method of minimizing the support vector count was introduced to substitute cross-validation method for optimal parameters selection. Experiment over high resolution remote sensing images QuickBird showed, with this method, the correction rate of cloud detection could be higher than 99%. It also suggested support vector count could reflect the classifier's estimation accuracy and was more easy to compute. The SVM classifier established in this way, compared with BP neural network, needed fewer training samples but achieved higher accuracy, it showed better performance in cloud detection field.
收录类别EI ; CSCD
语种中文
CSCD记录号CSCD:5177288
源URL[http://ir.nssc.ac.cn/handle/122/4408]  
专题国家空间科学中心_空间技术部
推荐引用方式
GB/T 7714
卞春江,余翔宇,候晴宇,等. 最小化支持向量数分类器的云检测[J]. 红外与激光工程,2014,43(6):1818-1822.
APA 卞春江,余翔宇,候晴宇,&张伟.(2014).最小化支持向量数分类器的云检测.红外与激光工程,43(6),1818-1822.
MLA 卞春江,et al."最小化支持向量数分类器的云检测".红外与激光工程 43.6(2014):1818-1822.

入库方式: OAI收割

来源:国家空间科学中心

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。