中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
SAR Image Reconstruction From Undersampled Raw Data Using Maximum A Posteriori Estimation

文献类型:期刊论文

作者Dong, Xiao; Zhang, Yunhua
刊名IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
出版日期2015
卷号8期号:4页码:1651-1664
关键词Biconvex optimization compressed sensing (CS) maximum a posteriori (MAP) multiplicative speckle synthetic aperture radar (SAR) total variation (TV)
ISSN号1939-1404
通讯作者Dong, X (reprint author), Chinese Acad Sci, Key Lab Microwave Remote Sensing, Ctr Space Sci & Appl Res, Beijing 100190, Peoples R China.
英文摘要A method for synthetic aperture radar (SAR) imaging using maximum a posteriori (MAP) estimation based on multiplicative speckle model is presented. The new method uses the total variation (TV) minimization to regularize the solution. The reconstruction of SAR image is formulated as a biconvex optimization problem, which is solved by the alternate convex search (ACS) method. Experiments on Radarsat-1 raw data show that the proposed method can recover most of the structural and texture details of the imaged scene using only a half of raw data. Compared with regular regularization methods for SAR imaging with incomplete data, the proposed method performs much better on less sparse scenes.
收录类别SCI ; EI
语种英语
源URL[http://ir.nssc.ac.cn/handle/122/4566]  
专题国家空间科学中心_微波遥感部
推荐引用方式
GB/T 7714
Dong, Xiao,Zhang, Yunhua. SAR Image Reconstruction From Undersampled Raw Data Using Maximum A Posteriori Estimation[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2015,8(4):1651-1664.
APA Dong, Xiao,&Zhang, Yunhua.(2015).SAR Image Reconstruction From Undersampled Raw Data Using Maximum A Posteriori Estimation.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,8(4),1651-1664.
MLA Dong, Xiao,et al."SAR Image Reconstruction From Undersampled Raw Data Using Maximum A Posteriori Estimation".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 8.4(2015):1651-1664.

入库方式: OAI收割

来源:国家空间科学中心

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。