中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Global well-posedness for the periodic Novikov equation with cubic nonlinearity

文献类型:期刊论文

作者Wu, Xinglong1; Guo, Boling2
刊名APPLICABLE ANALYSIS
出版日期2016-02-01
卷号95期号:2页码:405-425
关键词the periodic Novikov equation well-posedness blow-up scenario conservation laws global solutions Peakon solutions
英文摘要This paper is devoted to the study of the Cauchy problem to the periodic Novikov equation. Firstly, the local well-posedness for the equation is established. Secondly, we give the precise blow-up criterion, conservation laws, and prove that the equation has global strong solutions in time, if the initial potential does not change sign on R. Thirdly, with the initial potential satisfying the sign conditions, we show the existence of global weak solutions in time. Moreover, the uniqueness of global solution is addressed.
WOS标题词Science & Technology ; Physical Sciences
类目[WOS]Mathematics, Applied
研究领域[WOS]Mathematics
关键词[WOS]DEGASPERIS-PROCESI EQUATION ; SHALLOW-WATER EQUATION ; INTEGRABLE EQUATION ; PEAKON SOLUTIONS ; WEAK SOLUTIONS ; SHOCK-WAVES ; BREAKING
收录类别SCI
语种英语
WOS记录号WOS:000367596100007
公开日期2016-03-08
源URL[http://ir.wipm.ac.cn/handle/112942/9140]  
专题武汉物理与数学研究所_数学物理与应用研究部
作者单位1.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
2.Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
推荐引用方式
GB/T 7714
Wu, Xinglong,Guo, Boling. Global well-posedness for the periodic Novikov equation with cubic nonlinearity[J]. APPLICABLE ANALYSIS,2016,95(2):405-425.
APA Wu, Xinglong,&Guo, Boling.(2016).Global well-posedness for the periodic Novikov equation with cubic nonlinearity.APPLICABLE ANALYSIS,95(2),405-425.
MLA Wu, Xinglong,et al."Global well-posedness for the periodic Novikov equation with cubic nonlinearity".APPLICABLE ANALYSIS 95.2(2016):405-425.

入库方式: OAI收割

来源:武汉物理与数学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。