固定食用菌加工废弃物对铜,锌和汞的生物吸附研究
文献类型:学位论文
作者 | 沈飞 |
学位类别 | 硕士 |
答辩日期 | 2015 |
授予单位 | 中国科学院大学 |
授予地点 | 北京 |
导师 | 张丹 |
关键词 | 食用菌废弃物 固定 生物吸附 机理 |
其他题名 | Biosorption of Cu(Ⅱ) ,Zn(Ⅱ) and Hg(Ⅱ)from Water Solution by rejected material of edible fungi |
学位专业 | 环境工程 |
中文摘要 | 随着全球经济的快速发展,废水的大量排放,导致近年来,许多重金属对环境的污染日益严重。如何有效地治理重金属污染已经成为人类共同关注的问题。其中生物吸附技术是处理重金属污染水体的一项有效技术,最近几年在此基础上发展的固定技术更是把废水处理提高到新的水平。本文用固定技术固定食用菌废弃物,研究吸附去除废水中普遍存的铜、锌和汞,得出以下结果。 1 聚乙烯醇-海藻酸钠是提高香菇吸附能力的最佳固定材料 用海藻酸钠(SA)、聚乙烯醇(PVA)和琼脂作为食用菌废弃物的固定材料。比较了三种材料的成球性、耐酸性、机械强度。以PVA、SA、氯化钙和菌粉浓度为因素,设计正交实验。结果显示,固定食用菌的最佳配方是8%PVA+ 1%SA+3%菌粉+2% 氯化钙的饱和硼酸。 2. 固定食用菌废弃物在pH为6时吸附量最大 在pH值1-6的变化过程中,随着pH值的增加,不同类型食用菌废弃物吸附小球对铜,锌,汞的量逐渐增加。当pH值达到6时,不同类型固定食用菌废弃物达到最大吸附量,其对Cu2+,Zn2+和Hg2+最大吸附量qm值分别为:固定金针菇废弃物对铜,锌和汞的最大吸附量分别为8.131,7.234和8.208 mg/g;固定毛木耳废弃物对铜,锌和汞的最大吸附量分别为6.039,6.921和6.322 mg/g;固定杏鲍菇废弃物对铜,锌和汞的最大吸附量分别为4.288,3.970和3.789 mg/g;固定平菇废弃物对铜,锌和汞的最大吸附量分别为4.566,4.698和5.006 mg/g。 3 固定的食用菌废弃物动力学吸附是一个由快到慢的过程 (1)不同类型固定食用菌废弃物对重金属离子Cu2+,Zn2+和Hg2+的动力学吸附过程分为快速、慢速两种扩散形式,在1 min~120 min内是一个快速吸附的过程;120 min~180 min进入缓慢扩散阶段;180 min~300 min之内吸附量略有变化,但变化量极其微小;300 min~540 min吸附量无变化。由此得出,整个动力学吸附过程基本在2 h~3 h之间完成,3 h~5 h内进入可逆的吸附平衡阶段。同时确定,等温吸附批实验中将实验吸附的平衡时间统一设定为5 h。 (2)对比伪二级吸附动力学模型、Elovich模型、颗粒内扩散模型等数学模型对不同类型食用菌吸附小球吸附数据拟合的结果可知,伪二级吸附动力学模型能够较为准确的反映固定食用菌废弃物吸附小球吸附过程( >0.99,P<0.01),说明食用菌吸附小球在吸附废液中重金属的吸附过程是一个复杂的过程,包括外部液膜扩散过程、表面吸附过程和颗粒内部扩散过程等。 4 固定的食用菌废弃物吸附常数,最大吸附量和吸附率成正相关 (1)不同类型固定食用菌废弃物吸附小球的吸附等温线属于“L”型等温线,证明不同类型固定食用菌废弃物吸附小球对二元溶液中Cu2+,Zn2+的吸附是一个相对独立的过程。不同类型固定食用菌废弃物吸附Cu2+,Zn2+和Hg2+的动力学吸附率,Freundlich热力学模型拟合出的吸附常数Kf值以及Langmuir热力学模型拟合出最大吸附量qm三者呈正相关。不同类型固定食用菌废弃物吸附小球对Cu2+吸附常数Kf值分别为:金针菇吸附小球(0.3286)>毛木耳吸附小球(0.2893)>平菇吸附小球(0.1932)>杏鲍菇吸附小球(0.1403);不同类型固定食用菌废弃物吸附小球对Cu2+最大吸附量qm大小分别为:金针菇吸附小球(7.2304 mg/Kg)>毛木耳吸附小球(6.5713 mg/Kg)>平菇吸附小球(4.5136 mg/Kg)>杏鲍菇吸附小球(3.3732 mg/Kg);不同类型固定食用菌废弃物吸附小球对Cu2+动力学吸附率大小分别为:金针菇吸附小球(81.31%)>毛木耳吸附小球(60.39%)>平菇吸附小球(50.03%)>杏鲍菇吸附小球(42.88%)。不同类型固定食用菌废弃物吸附小球对Zn2+吸附常数Kf值大小为:针菇吸附小球(0.2662)>毛木耳吸附小球(0.2593)>平菇吸附小球(0.2110)>杏鲍菇吸附小球(0.1295);不同类型固定食用菌废弃物吸附小球对Zn2+最大吸附量qm大小分别为:金针菇吸附小球(6.2775 mg/Kg)>毛木耳吸附小球(6.1283 mg/Kg)>平菇吸附小球(5.1274 mg/Kg)>杏鲍菇吸附小球(2.8512 mg/Kg);不同类型固定食用菌废弃物吸附小球对Zn2+动力学吸附率大小分别为:金针菇吸附小球(72.34%)>毛木耳吸附小球(69.21%)>平菇吸附小球(52.52%)>杏鲍菇吸附小球(39.70%)。不同类型固定食用菌废弃物吸附小球对于Hg2+吸附常数Kf值大小分别为:金针菇吸附小球(0.3496)>毛木耳吸附小球(0.2367)>平菇吸附小球(0.1394)>杏鲍菇吸附小球(0.1217);不同类型固定食用菌废弃物吸附小球对于Hg2+的最大吸附量qm分别为:金针菇吸附小球(7.8690 mg/Kg)>毛木耳吸附小球(6.0412 mg/Kg)>平菇吸附小球(3.3600 mg/Kg)>杏鲍菇吸附小球(2.7781 mg/Kg);不同类型固定食用菌废弃物吸附小球对于Hg2+的动力学吸附率分别为:金针菇吸附小球(82.02%)>毛木耳吸附小球(63.22%)>平菇吸附小球(51.83%)>杏鲍菇吸附小球(37.89%)。。 (2)吸附过程均可以用Freundlich模型(r2=>0.9256,p<0.01)和Langmuir模型(r2=>0.9624,p<0.01)拟合,Langmuir模型略好于Freundlich模型。 5 扫描电镜与红外光谱分析结果 (1)固定金针菇废弃物吸附前后的微观形态变化 固定金针菇废弃物吸附前的微观形态菌体细胞排列较紧密,游离,未变形,完整的细胞体较多。固定金针菇废弃物吸附后Cu2+,Zn2+后,可以看到,细胞受到破坏,变得不完整,细胞壁增厚了,而且在细胞壁上形成了明显的沉淀或是晶体。新的结晶物的出现有以下几种可能:1)无机盐沉积,如Zn(OH)2、Zn(OH)2等;2)细胞和细胞壁吸附Cu2+,Zn2+后,引起本身结构中一些生物大分子的重排,有非晶态或不完善晶态转变为结晶态;3) Cu2+,Zn2+与一些生物分子或小颗粒结合沉积在菌体颗粒表面,形成晶状结构。吸附了汞的固定金针菇废弃物小球,吸附Hg2+后小球表面变得密实细胞壁表面形成了沉积,细胞壁增厚表面变得光滑,但无明显的汞晶体出现。这种现象出现的几种可能:1)无无机盐沉积,如Hg(OH)2只能存在于溶液中;2)细胞和细胞壁吸附Hg2+后,没有引起本身结构中一些生物大分子的重排,无非晶态或不完善晶态转变为结晶态;3) Hg2+与一些生物分子或小颗粒结和,但没有沉积在菌体颗粒表面,形成晶状结构,而是透过了细胞壁进入了细胞内。 (2)红外光谱分析结果 红外光谱分析结果表明:不同类型吸附小球吸附铜、锌和汞主要是通过细胞壁上的-OH和-NH与金属离子发生化合反应(如离子交换、配位结合或络合等)。固定金针菇废弃物吸附铜、锌和汞的能力强于其它固定食用菌废弃物的主要原因是:固定金针菇吸附小球细胞壁上的官能团-NH远高于其它的食用菌废弃物。 |
英文摘要 | Abstract Recently, with the development of global economy, water pollution becomes more and more severe. Heavy metal is to endanger extremely large pollution to the ecological environment. In company with the fast development of the metal plating, mining, dying, petrochemical and battery Industries, a great deal of waste water containing the excessive dangerous heavy metal ions has been discharged into the environment and would endanger the great harm to the environmental ecology and the human health. Technology of immobilized microorganism is one kind of high-effect, fleetnesss, and is able to cut down secondary pollution effectively. This research reports the adsorption performance of the edible fungus rejected material The different dynamic characteristics of edible fungus adsorption ball: (1) The adsorption process of the different edible fungus adsorption ball in the unitary solution and binary solution are similar. The adsorption process reaches equilibrium at 2h. The adsorption process have the fast and slow process. In the 1h adsorption process ,adsorption rate increase rapidly, the adsorption quantity has increased sharply. Unhurried 2h to 5h, the adsorption process has became slow, the adsorption process reaches equilibrium. In the back of the isothermal adsorption experiment, the adsorption process equilibrium time set for 5h. (2) Contrast the pseudo-second-order kinetics equation, Elovich model, diffusion model data fitting, bythe pseudo-second-order kinetics equation (>0.99,P<0.01). The process of edible fungus adsorption ball in waste water is a complex process, including external liquid membrane diffusion and surface adsorption process and particle internal diffusion process, etc. The isotherm adsorption characteristics of the different edible fungus adsorption ball: (1)The adsorption isotherm of the different edible fungus adsorption ball is show as “L-form”. The rate order of adsorption constant ( ) for Cu2+was needle mushroom (0.3286) >auricularia polytricha (0.2893) >oyster mushroom (0.1932)>peurotus eryngii(0.1403); The rate order of adsorption constant ( ) for Zn2+was needle mushroom (0.2662) >auricularia polytricha (0.2593) >oyster mushroom (0.2110)>peurotus eryngii(0.1295). As well, the maximum adsorption capacity and adsorption constant is proportional to the different edible fungus adsorption ball ,the maximum adsorption capacity (qm) of Cu2+:needle mushroom (7.2304 mg/kg)>auricularia polytricha(6.5713 mg/kg)>oyster mushroom (4.5136 mg/kg)>peurotus eryngii(3.3732 mg/kg); the maximum adsorption capacity (qm) of Zn2+ :needle mushroom (6.2775 mg/kg) >auricularia polytricha (6.1283 mg/kg) >oyster mushroom (5.1274 mg/kg)>peurotus eryngii(2.8512 mg/kg). Furthermore, the adsorption rate andadsorption constant ( ) are positively related, the adsorption rate of Cu2+: needle mushroom (81.31%)>auricularia polytricha (60.39%) >oyster mushroom (50.03%)>peurotus eryngii(42.88%); the adsorption rate of Zn2+ : needle mushroom (72.34%)>auricularia polytricha (69.21%) >oyster mushroom (52.52%)>peurotus eryngii(39.70%). Therefor, determining the needle mushroom for the best adsorbent adsorption by the dynamic characteristics in the unitary solution. The needle mushroom adsorption constant ( ) for mercury is 0.3496, the the maximum adsorption capacity (qm) is 7.8690 mg/kg. (2) The adsorption data of the different edible fungus adsorption ball , is obtained by the Freundlich model (0.9069,p<0.01) and Langmuir modle (0.9998,p<0.01) Scanning electron microscopy (SEM) and infrared spectrum analysis (1)According to scanning electronic microscope (SEM) observation: after absorption of metal ion, thickness of the edible fungus increases, having surface deposition and zinc crystals appear. After absorption of Zn2+, thickness of the needle mushroom increases, and suerfacing the crystal of zinc; After absorption of Hg2+, thickness of the needle mushroom increases, but no suerfacing obvious crystal of mercury. (2) |
语种 | 中文 |
源URL | [http://ir.imde.ac.cn/handle/131551/14146] ![]() |
专题 | 成都山地灾害与环境研究所_山地表生过程与生态调控重点实验室 |
作者单位 | 中国科学院成都山地灾害与环境研究所 |
推荐引用方式 GB/T 7714 | 沈飞. 固定食用菌加工废弃物对铜,锌和汞的生物吸附研究[D]. 北京. 中国科学院大学. 2015. |
入库方式: OAI收割
来源:成都山地灾害与环境研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。