生物多样性适应气候变化保护网络识别研究—以四川省为例
文献类型:学位论文
作者 | 逯亚峰![]() |
学位类别 | 博士 |
答辩日期 | 2015 |
授予单位 | 中国科学院研究生院 |
授予地点 | 北京 |
导师 | 王玉宽 |
关键词 | 气候变化 生物多样性 保护区 廊道 四川省 |
其他题名 | Study on Optimization of Biodiversity Conservation Networks to Climate Change-A Case Study of Sichuan Province |
学位专业 | 自然地理学 |
中文摘要 | 识别和建立保护网络是生物多样性保护与适应气候变化的有效途径。世界各国在履行联合国《生物多样性公约》和《气候变化国际框架》公约中,提出了各种生物多样性适应气候变化战略,但在识别和构建保护网络方面,尚缺乏一套系统的规划识别方法。本文在中-挪生物多样性与气候变化项目的支持下,拟通过气候变化对生物多样性影响预估方法筛选、应用,并与系统保护区识别模型以及廊道识别模型相结合。同时考虑地理因素对于保护区识别的影响,探索建立一套生物多样性适应气候变化保护网络识别方法,以期为生物多样性保护和适应气候变化战略与规划制定提供借鉴和参考。此外,本文选四川省为研究区,使用此方法对生物多样性适应气候变化的保护网络进行识别。 在研究过程中,首先收集了基于RegCM模型的预估的未来气候变化数据,为在更小的尺度上反映气候变化影响,需使用薄盘样条的插值方法对气候数据进行降尺度处量。在此基础上,通过气候—植被模型以及最大熵模型评估气候变化下生物多样性的分布及其变化。另外,为考虑地形的作用,本文通过建立量化的评估方法,分析地形复杂程度对生物气候变化适应性的影响并将其作为保护成本引入生物多样性保护区的识别体系中。在使用保护区规划工具识别保护区时,为进一步降低保护区识别结果的不确定性,需将当前已有的保护基础设施纳入到保护对象过程,使得识别出的保护区既能满足当前生物多样性的保护,又适用于气候变化情景。通过对保护对象与保护代价的扩展,本文建立了一套更为有效的生物多样性适应气候变化保护区识别方法。与此同时,通过整合当前常用的生物廊道识别模型,发挥不同模型在识别过程中的优势,并充分考虑气候变化对于廊道自身的影响,形成新的气候变化背景下的生物多样性廊道识别方法。最后将本研究构建的方法对适应气候变化的保护区与廊道进行识别并且进行空间叠加,既可形成保护网络。 对四川省的实例分析结果表明(1)评估气候变化对于植被的影响发现,气候变化背景下,高寒植被受气候变化影响最大。至未来2070-2099时段,可能将有约50%的高寒植被分布区消失,变化剧烈的区域主要集中于海拔3800-4500m区域内。相比远期的气候变化影响,近期和中期的气候变化程度对于植被类型的影响更值得关注。(2)评估物种变化的结果表明,在气候变化下,选取的大多数敏感物种整体向高纬度和高海拔移动。在未来不同时段,四川省生物多样性分布格局虽无明显变化,但是由于物种的迁移,导致四川各地区物种多样性增加的趋势。增加比较明显的区域主要集中于盆周山中段、川西北高山、山原峡谷区和川西北高原区。(3)对地形复杂度与其对生物气候变化适应性影响的评估表明,在空间分布上,地形复杂度的变化及其对生物气候变化适应性的影响程度基本一致,地形复杂程度高的区域,其对生物的气候变化适应性提升明显。但在不同的气候变化程度下,相同的地形复杂程度表现出对于生物适应性不同的影响程度。总体呈现出,随着气候变化的加剧,地形对生物适应性的影响逐渐降低,特别是当气候变化程度较为剧烈时,研究区内所有区域的气候变化适应性均低于30%。(4)本研究构建的方法识别出的保护区能够在气候变化背景下更有较的保护生物多样性,大部分物种栖息地的保护比例均在30%以上。但是相比当前的自然保护区,本文识别出的保护优先区面积更大。因此,在气候变化的背景下有必要新建和扩大保护面积(5)在整合电阻模型和成本最低路径模型的基础上,运用气候—植被模型分析气候变化对于廊道内部生态系统的影响,使得识别出廊道既能远离人类活动干扰较强的区域又能避免气候变化对于廊道内部生态系统的影响,可以更有效的支持研究区内的生物多样适应气候变化。并且,本文构建的方法也可为相似区域的保护廊道识别提供借鉴。 |
英文摘要 | Climate change has been one of the important threaten factors to conservation biodiversity. Identified conservation networks is an effective approach to protect biodiversity. The different goverments that implemented the "Convention on biological diversity" and "the International Framework Convention on climate change", provide different conservation strategies for biodiversity in addressing climate change due to lack of a system of regional conservation planning. In "Sino-Norwegian Biodiversity and Climate Change Project-Sichuan Field Project" support, we developed reserve networks that are resilient to climate change and trade off between conservation cost and conservation goals. In order to reduce uncertainty in identifying conservation areas, we combined biodiverisity distribution models and considered the influence of effects of topographic heterogeneity with conservation planning tool to identify reserve systems. Meanwhile, we modified identification corridor approach to plan corridors to address climate change. We applied these methods to assess and suggest revisions to conservation areas and corridors plan in Sichuan Province. In our study, we selected climate change data from Regional Climate Model. Then the model output was calibrated by using 204 meteorological stations data in and around Sichuan Province. After that, a spatial interpolation software - Anusplinwas used to downscale temperature and precipitation data, with elevation as independent covariable. Meanwhile the climate-vegetation model and the Maxent model were used to predict expected changes in biodiversity in future climate change. Moreover, we developed an approach to quantify relationship between biologial adaptive capacity and topographic heterogeneity under climate change. In order to reduce uncertainty, the conservation target also included nature reserve. By integrating information of coservation targets and conservation cost, we developed an more effective approach to plan conservation areas under climate change. Meanwhile, we used LCP model and Circuitcape model to identify corridor to address climate change. Based on the results of conservation areas and corridors, we use method of spatial overlay to produce reserve networks to climate change. We selected Sichuan Province as study area, several conclusions are drawn as follows. (1) The ecosystems in Sichuan will exhibit a trend to move to high latitudes and high elevations with the change of climate, that is, they will migrate to the northwestern part of the province. With the movement of ecosystems, the types and area of the ecosystems in the Sichuan Basin and surrounding mountain areas as well as plateaus and gorges will present different changes and trends due to topographical differences. In period 2070-2099, the area of alpine ecosystem area would decrease about 50%. By calculating the changed area into elevation zones of 100 m interval, the changed area was concentrated in elevational range from 3800 m to 4500 m. (2) Similar to the predictions for ecosystems, most species in Sichuan will show trends of horizontal and vertical migration with climate change, having the characteristics noted here. Species in Sichuan generally will move to higher latitudes and higher elevations due to future warming effects with different regional changes. The biodiversity in Sichuan will have a rising trend with the movement of species. The areas with significant differences in regional mountain elevations and distinct vertical vegetation bands in the middle ranges of mountainous regions surrounding the Sichuan Basin. (3) The results show that the change of topographic heterogeneity is consistent with adaptive capacity in spatial distribution. Under the same rate of climate change, we found that the adaptive capacity increases with topographic heterogeneity increase. However, it is noted that the complex terrain effectively enhances biological adaptive capacity under the low r |
语种 | 中文 |
公开日期 | 2016-04-26 |
源URL | [http://ir.imde.ac.cn/handle/131551/15065] ![]() |
专题 | 成都山地灾害与环境研究所_山区发展研究中心 |
作者单位 | 中国科学院成都山地灾害与环境研究所 |
推荐引用方式 GB/T 7714 | 逯亚峰. 生物多样性适应气候变化保护网络识别研究—以四川省为例[D]. 北京. 中国科学院研究生院. 2015. |
入库方式: OAI收割
来源:成都山地灾害与环境研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。