顺铂高分子纳米抗肿瘤药物输送体系的设计与应用
文献类型:学位论文
作者 | 于海洋 |
学位类别 | 硕士 |
答辩日期 | 2015-04 |
授予单位 | 中国科学院研究生院 |
授予地点 | 中国科学院长春应用化学研究所 |
导师 | 陈学思 |
关键词 | 化疗 顺铂 多肽 纳米粒子 肿瘤 渗透 |
中文摘要 | 目前,癌症已经成为导致人类死亡的主要原因。化疗是癌症最重要的治疗手段之一。顺铂是应用最广泛的一类抗肿瘤药物,然而,顺铂的体内半衰期短且易产生耐药性,大大限制了其药效的发挥。为解决上述问题,我们利用聚氨基酸担载顺铂,制备成纳米粒子,应用在实体瘤的治疗中。而聚氨基酸载体材料的性质决定了纳米粒子的血浆药代动力学、生物分布和体内疗效。同时由于实体肿瘤的渗透性低,纳米粒子所担载的绝大部分化疗药物无法进入肿瘤中心区域,这极大的限制了纳米药物的治疗效果。我们开发了如下两类体系,并对其在降低毒性、提高肿瘤渗透性进而增加药效方面进行了考察。 1)制备了一系列聚L-谷氨酸接枝聚乙二醇单甲醚共聚物(PLG-g-mPEG),继而担载顺铂,制备成纳米粒子(CDDP/PLG-g-mPEG)。实验表明PLG-g-mPEG载体材料的性质(如PLG的分子量、mPEG/PLG的质量比、mPEG的链长、超滤纯化和顺铂载药量)对CDDP/PLG-g-mPEG纳米粒子的血浆药代动力学有着显著的影响。纳米粒子的血液循环时间随着mPEG/PLG的质量比、mPEG的链长和顺铂载药量的增加而延长,同时经过超滤纯化纳米粒子也可以延长其血液循环时间。药代动力学和生物分布研究表明所选的CDDP/PLG-g-mPEG纳米粒子NP10具有长血液循环时间和在Lewis肺癌(LLC)肿瘤中的显著蓄积。NP10在LLC荷瘤小鼠的血药浓度是相同给药剂量CDDP的46倍,NP10在48小时的血浆浓度时间曲线下面积(AUC)为CDDP的31倍。肿瘤内NP10与CDDP铂浓度比高达9.4,两者的AUC比值为6。C26小鼠肿瘤模型实验显示NP10与顺铂相比具有更高安全性和耐受性,并且能有效抑制的C26肿瘤的生长。当NP10给药剂量为CDDP的2或3倍时,可获得的与顺铂的相当或更高的抗癌功效。 2)通过N5-苄氧羰基-L-鸟氨酸-N-羧酸酐[Orn(Cbz)-NCA)]、L-甘氨酸-N-羧酸酐(Gly-NCA)和β-苄基-L-天冬氨酸-N-羧酸酐[Asp(Bn)-NCA]的开环聚合、脱保护和胍基化的方法,制备了一种新型的鸟氨酸(O)、精氨酸(R)、甘氨酸(G)和天冬氨酸(D)的无规共聚肽[Poly(O,R,G,D)]。分别通过NMR和GPC对Poly(O,R,G,D)结构进行表征,并通过MTT实验显示了Poly(O,R,G,D) 具有低毒性和良好的细胞相容性。Poly(O,R,G,D)内部包含一些R/KXXR/K序列(X代表O、R、G或 D),它在蛋白酶的裂解作用下,将其隐形的CendR多肽片断暴露出来,然后与NRP-1相结合,就具有促进血管渗漏和肿瘤的渗透的能力。因此Poly(O,R,G,D)经蛋白酶解后具有CendR多肽的性质。Miles试验证实酶解的Poly(O,R,G,D)可以增加示踪剂伊文思蓝从注射部位的真皮微血管渗漏。在MCF-7实体瘤的治疗中,瘤内注射Poly(O,R,G,D)能够提高顺铂纳米药物在肿瘤内的蓄积近40%。这些结果表明Poly(O,R,G,D)是一个能够提高实体瘤的血管渗漏和组织渗透性的高分子肿瘤促渗透剂。 通过本论文的研究,希望能够对聚氨基酸担载顺铂的纳米载药体系的研发提供基础性实验依据,同时为利用肿瘤渗透剂来增加纳米药物在肿瘤部位的蓄积,进而提高化疗疗效提供参考和新思路。为聚氨基酸担载顺铂的纳米药物的传输奠定临床基础。 |
英文摘要 | Cancer has become the main reason to cause the human death. Chemotherapy is one of the most important treatments for the malignancy disease. Cisplatin as an anticancer drug is widely used, however, cisplatin has short half-life in vivo and resistance, leading to low utilization of drugs and toxic side effects. To solve the above problems, we prepared polypeptide loading cisplatin nanoparticles for the treatment of solid tumors. The properties of polypeptide carrier influence the plasma pharmacokinetics, biodistribution and in vivo efficacy of the nanoparticles. The therapeutic efficacy of nanomedicines to many solid tumors is limited by their poor penetration into tumor tissue. We have developed the following two systems, and made attempt to reduce side effects, enhance tumor permeability and increase the efficacy. The main content and conclusions of this dissertation are summarized below: 1)a series of poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) (PLG-g-mPEG) copolymers were prepared for the preparation of the CDDP-loaded PLG-g-mPEG (CDDP/PLG-g-mPEG) nanoparticles. All of the parameters, including PLG molecular weight, mPEG/PLG weight ratio, mPEG chain length, ultrafiltration purification and cisplatin loading content, were found to have significant influence on the plasma pharmacokinetics of the CDDP/PLG-g-mPEG nanoparticles. The blood circulation time of the nanoparticles prolonged with the increase of mPEG/PLG weight ratio, mPEG chain length and CDDP loading content. The use of ultrafiltration purification could prolong the blood circulation time of the nanoparticles as well. Pharmacokinetics and biodistribution study demonstrated that the selected CDDP/PLG-g-mPEG nanoparticles NP10 had long blood circulation time and could achieve selective and significant accumulation in the Lewis lung carcinoma (LLC) tumors. The platinum plasma concentrations in the LLC tumor-bearing mice receiving the same dose of NP10 remained up to 46-fold higher than that of free CDDP. The plasma area under the concentration time curve (AUC) of NP10 was 31-fold higher than that of free CDDP in 48 hrs. The platinum concentration ratio of NP10 to free CDDP in tumors reached up to 9.4. The tumor AUC ratio of NP10 to CDDP was 6. Mouse C26 tumor models showed that NP10 possessed the improved safety and tolerance in vivo as compared with CDDP and could effectively inhibit the growth of C26 tumor. Comparable or higher anticancer efficacy of NP10 than that of free CDDP could be obtained by increasing the dosage of NP10 to 2 or 3-fold of free CDDP. 2)A novel random copolypeptide of ornithine, arginine, glycine and aspartic acid [Poly(O,R,G,D)] has been prepared through the ring-opening polymerization of N-δ-Carbobenzoxy-L-ornithine N-carboxyanhydride [Orn(Cbz)-NCA)], L-glycine N-carboxyanhydride (Gly-NCA) and β-benzyl L-aspartate N-carboxyanhydride [Asp(Bn)-NCA] and the subsequent deprotection and guanidization. The structure of the Poly(O,R,G,D) was confirmed by nuclear magnetic resonance spectra (NMR) and gel permeation chromatography (GPC). MTT assay revealed the Poly(O,R,G,D) possessed a low toxicity and good compatibility to cells. The poly(O,R,G,D) contained some internal sequences of RXXR (X = O, R, G or D) that could be proteolytically cleaved to expose the cryptic CendR element and bind to Neuropilin-1. This would cause vascular and tissue permeabilization. Therefore trypsin-cleaved Poly(O,R,G,D) increased the vascular leakage of Evans blue from dermal microvessels at the injection site in Miles assay. The intratumoral injection of the Poly(O,R,G,D) enhanced the accumulation of cisplatin-loaded nanoparticles in MCF-7 solid tumors by approximately 40%. These indicated that the Poly(O,R,G,D) is tumor-penetrating agent, which can increase the vascular leakage and tissue penetration in a solid tumor. The above results are expected to provide important evidence on the application of polypeptide loading cisplatin nanoparticles system, and also provide some new strategies for increasing nanomedicines accumulated in the tumor and enhancing chemotherapy effect by the tumor-penetrating agent. The work finished here have lay the foundation for clinical application of polypeptide-based delivery of cisplatin. |
语种 | 中文 |
公开日期 | 2016-05-03 |
源URL | [http://ir.ciac.jl.cn/handle/322003/64467] ![]() |
专题 | 长春应用化学研究所_长春应用化学研究所知识产出_学位论文 |
推荐引用方式 GB/T 7714 | 于海洋. 顺铂高分子纳米抗肿瘤药物输送体系的设计与应用[D]. 中国科学院长春应用化学研究所. 中国科学院研究生院. 2015. |
入库方式: OAI收割
来源:长春应用化学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。