中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
高韧性全生物降解高分子复合材料的制备与性能研究

文献类型:学位论文

作者周林尧
学位类别博士
答辩日期2015-04
授予单位中国科学院研究生院
授予地点中国科学院长春应用化学研究所
导师姜伟
关键词全生物降解 聚(3-羟基丁酸酯) 聚碳酸亚丙酯 聚乳酸 增韧
中文摘要白色污染和石油资源的快速消耗成为影响人类社会可持续发展的重大问题,引起了全球的高度重视,大力发展以可再生资源为原料的生物降解高分子材料成为普遍共识。然而,时至今日,与传统石油基高分子材料相比,多数生物降解高分子材料在性能上仍存在不足,成本也还偏高,严重制约了其广泛应用。在这一研究背景下,本论文将多种可生物降解的高分子材料进行共混,制备出高韧性的全生物降解复合材料,具体研究内容与结论如下: 1.高抗冲全生物降解聚(3-羟基丁酸酯)/聚碳酸亚丙酯/碳酸丙烯酯共混物的制备与性能研究。为提高聚(3-羟基丁酸酯)(PHB)的抗冲击性能,将聚碳酸亚丙酯(PPC)和碳酸丙烯酯(PC)与PHB进行熔融共混。结果表明,PC的含量越高,PPC的塑化程度越高,塑化PPC的模量也就越小,其在基体中的分散形貌也越规整、粒子尺寸也越小。分散相的模量低和粒子尺寸小是PHB的抗冲击性能提高的两条根本原因。当塑化PPC中增塑剂的质量分数达到25 wt%时,共混物的冲击强度可达34.9±3.4kJ/m2,几乎是纯聚(3-羟基丁酸酯)冲击强度(3.7±0.3 kJ/m2)的十倍。 2.高抗冲低成本全生物降解聚乳酸/聚醚酰胺/热塑性淀粉醋酸酯共混物的制备与性能研究。将玉米淀粉酯化改性后,再将其塑化产物热塑性淀粉醋酸酯与聚乳酸、聚醚酰胺共混。力学测试结果显示,聚乳酸/聚醚酰胺/热塑性淀粉醋酸酯共混物的冲击强度、拉伸强度、断裂伸长率都随着酯化度的增加而先升后降,在酯化度为0.04时达到最高值。透射电子显微镜照片显示,共混物中形成了以聚醚酰胺为外壳、热塑性淀粉醋酸酯为内核的核壳结构分散相粒子,并且当酯化度为0.04时,核壳粒子的尺寸最小最均一。研究结果还发现,在保证材料的抗冲击性能比较接近的前提下,使用廉价的淀粉或淀粉醋酸酯可以显著减少昂贵的聚醚酰胺弹性体的使用量,进而有效地降低了这一全生物降解高分子复合材料的成本。 3.高抗冲全生物降解聚乳酸/聚醚酰胺/热塑性交联淀粉共混物的制备与性能研究。对玉米淀粉进行交联改性,再将交联淀粉塑化,随后,制备了高韧性的聚乳酸/聚醚酰胺/热塑性交联淀粉三元共混物。共混物的冲击强度、拉伸强度、断裂伸长率都随着交联剂投入量的增加而先升后降,当交联剂的用量为淀粉干重的0.5 wt%时达到最大值。电子显微镜照片显示,分散相的形貌同样受到交联剂用量的影响,当交联剂用量为0.5 wt%时,分散相粒子的尺寸最小。 4.全生物降解聚乳酸/聚醚酰胺/热塑性双重改性淀粉共混物的制备与性能研究。对玉米淀粉进行先交联再酯化或先酯化再交联的双重改性,并将双重改性产物塑化。在各组分比例相同的情况下,聚乳酸/聚醚酰胺/热塑性双重改性淀粉共混物的冲击强度没能超越聚乳酸/聚醚酰胺/热塑性淀粉醋酸酯共混物的冲击强度。 5. 高韧性全生物降解聚乳酸/聚碳酸亚丙酯共混物的制备与性能研究。通过加入催化剂钛酸四丁酯,提高聚乳酸与聚碳酸亚丙酯之间的酯交换反应进行程度,从而提高了二者的相容性,共混物的韧性也随之提高。催化剂钛酸四丁酯的加入量、聚乳酸/聚碳酸亚丙酯二者的比例对共混物的韧性都有重要影响。
英文摘要In the recent few decades, the rapid consumption of non-renewable oil resource and increasingly serious disposal problem of the non-degradable plastics stimulate people to develop biodegradable polymer material from renewable resources, and big processes have been made. However, there are still some deficiencies in the properties of many biodegradable polymers, and the prices are also higher than the petroleum based polymers. Therefore, the widespread use of biodegradable polymers is limited seriously. In this context, several kinds of biodegradable polymer were selected to prepare full-biodegradable polymer composites with good toughness and low cost. Details of the research contents and the results are summarized as follows: 1. Toughening of full-biodegradable poly (3-hydroxybutyrate)/ plasticized poly (propylene carbonate) blends. In order to improve the poor impact resistance of poly (3-hydroxybutyrate) (PHB), poly (propylene carbonate) (PPC) and plasticizer propylene carbonate (PC) were used together to toughen PHB. The impact strength of PHB/PPC/PC blends could be significantly increased up to 34.9±3.4 kJ/m2 when the PC content reached 25 wt%, which was almost 10 times of the impact strength of neat PHB (3.7±0.3 kJ/m2). On the other hand, as the PC content increased, the Young’s modulus of plasticized PPC decreased and the particle size of the dispersed phase in the matrix became more uniform and smaller. Both the low Young’s modulus and smaller uniform particle size of plasticized PPC were the fundamental reasons of the improvement of toughness of PHB/PPC/PC blends. 2. Toughening of polylactide with polyether-block-amide and thermoplastic starch acetate. Native corn starch was esterified with acetic anhydride and plasticized with glycerol. Subsequently, the thermoplastic starch acetate (TPSA) was blended with polylactide (PLA) and polyether-block-amide-graft-glycidyl methacrylate (PEBA-g-GMA) to obtain full biodegradable PLA/PEBA-g-GMA/TPSA blends with high notched impact resistance and low cost. Comparing with PLA/PEBA-g-GMA blend, as much as 9 wt% expensive PEBA-g-GMA elastomer could be substituted by the slightly acetylated thermoplastic starch for achieving equivalent high impact strength in the PLA/PEBA-g-GMA/TPSA blend. More interesting was that the mechanical properties depended on the esterification degree of starch acetate. The impact strength, tensile strength and elongation at break increased to the peak value with increasing the esterification degree from 0 to 0.04, thereafter they decreased with further increasing the esterification degree. The morphological results showed that the TPSA particles were smaller and more uniform for optimum esterification degree: 0.04, leading to the peak value of mechanical properties. 3. Toughening of polylactide with polyether-block-amide and thermoplastic cross-linked starch. Native corn starch was cross-linked with epichlorohydrin (ECH) and plasticized with glycerol. Subsequently, the thermoplastic cross-linked starch (TPCLS) was blended with polylactide (PLA) and polyether-block-amide-graft-glycidyl methacrylate (PEBA-g-GMA) to obtain full biodegradable PLA/PEBA-g-GMA/TPCLS blends with high notched impact resistance and low cost. It was also found that the impact strength, tensile strength and elongation at break of the ternary blends increased to the peak value with increasing the addition amount of the cross-linking agent ECH from 0 to 0.5 wt%, thereafter it decreased with further increasing the ECH amount. The morphological results showed that the TPSA particles were smaller and more uniform for optimum ECH addition amount (i.e. optimum cross-linking degree of starch), leading to the peak value of mechanical properties. 4. Toughening of polylactide with polyether-block-amide and thermoplastic cross-linked starch acetate. Double modification was performed on native corn starch by two steps (first cross-linking and then esterification or first esterification and the
语种中文
公开日期2016-05-03
源URL[http://ir.ciac.jl.cn/handle/322003/64473]  
专题长春应用化学研究所_长春应用化学研究所知识产出_学位论文
推荐引用方式
GB/T 7714
周林尧. 高韧性全生物降解高分子复合材料的制备与性能研究[D]. 中国科学院长春应用化学研究所. 中国科学院研究生院. 2015.

入库方式: OAI收割

来源:长春应用化学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。