中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
基于ROMP的新型高分子材料:设计、合成及性能研究

文献类型:学位论文

作者杨继兴
学位类别博士
答辩日期2015-04
授予单位中国科学院研究生院
授予地点中国科学院长春应用化学研究所
导师李悦生
关键词开环易位聚合 环烯烃聚合物 热塑弹性体 自修复材料 两亲性嵌段共聚物
中文摘要以Grubbs催化剂为代表的钌系催化剂的出现,使得开环易位聚合(ROMP)成为高分子材料合成领域一种重要的聚合方法。Grubbs催化剂具有高活性,高官能团耐受性和可实现活性聚合等优点,使得ROMP可用于合成许多其他聚合方法难以得到的聚合物材料,如共轭导电高分子、生物活性高分子、梳形高分子、嵌段共聚物、遥爪聚合物、环状高分子等。高性能高分子材料一直以来都是高分子合成化学领域重要的研究方向。本论文利用Grubbs催化剂催化的ROMP,通过设计合成新型单体和对聚合物链结构的调控,合成并研究了一系列高性能的高分子材料。主要的研究结果如下: (1)新型高耐热型环烯烃聚合物Ⅰ(COPs):利用一种大位阻的环烯烃单体,在Grubbs第一代催化剂(G1)的催化下,高效率的得到了主链含双键的聚合物。化学氢化后,得到的环烯烃聚合物(COP)玻璃化转变温度(Tg)达223.6 °C,这比商品化最高Tg高了近40 °C。通过溶液成膜,得到了一种高耐热型透明COP,其透光率可达90 %;拉伸测试表明,该材料也具有优良的力学性能。通过与其它两种小位阻的单体共聚,并且控制两种单体的投料比,可以精确地调节环烯烃聚合物的Tg,从而得到不同耐热品级的材料。 (2)新型高耐热型环烯烃聚合物Ⅱ(COPs):通过控制聚合反应时间和投料比,我们首次利用大位阻降冰片烯类单体和环辛烯在G1催化下的梯度共聚得到了高Tg,高透明性的COP。COPs的Tg最高可达207 °C,溶液成膜得到透光率高达88 %的新型耐热高透COPs。虽然是利用ROMP的方法,但是所得聚合物链结构更加类似于乙烯与环烯烃共聚而得到的环烯烃共聚物(COCs)。研究表明,这种方法尤其适合于制备高Tg (> 150 °C)的COPs。 (3)新型三嵌段热塑性弹性体(TPEs):利用活性ROMP的方法,通过次序加料得到了一系列不同类型的三嵌段(ABA or ABC)热塑弹性体。研究表明:在软段末端同时引入结晶性硬段不但可以提高材料的力学强度,而且可以提高材料的弹性恢复性。ABC结构(结晶态-高弹态-低Tg玻璃态)的三嵌段共聚物具有更长的断裂伸长率,但是拉伸强度有所下降。当在软段的两端同时引入刚性(更高Tg)和结晶性的硬段可得到同时具有高力学强度和优良弹性恢复性的高性能TPE。在此优化条件下,弹性恢复率可达93 %。该部分工作具有十分重要的科学意义,为更 优良性能的热塑弹性体的设计合成提供了一定的理论指导作用。 (4)自修复热塑弹性体(Self-healing TPEs):利用活性ROMP方法合成了一系列软硬两嵌或硬软硬三嵌段的热塑弹性体。通过将氢键引入到软硬两嵌或硬软硬三嵌段的软段中,不仅可以提高弹性体的力学性能,并且可以赋予材料良好的自修复性能。该热塑弹性体的自修复行为是在没有任何外部刺激的条件下进行的(主动型自修复)。通过优化条件,所得的自修复弹性体断裂伸长率修复率最高可达85 %。我们的工作为设计合成具有良好自修复性能的热塑弹性体提供了一种新的设计理念。 (5)新型两亲性嵌段共聚物的合成:含羧基的两亲性嵌段共聚物具有很大的应用潜力。利用酸酐的水解的方法得到两亲性嵌段共聚物是一种简便的合成方法。然而对于含酸酐的单体,很难实现活性ROMP。通过设计合成一系列含不同取代基的酸酐单体,优化条件下,首次实现了酸酐单体的活性ROMP。我们的工作表明,对于强极性的基团,通过合理的设计单体结构,Grubbs催化剂仍然能够实现活性聚合。这丰富Grubbs催化剂催化活性聚合的理论内容,也为合成含羧基的两亲性嵌段共聚物提供了新的合成方法和路径。
英文摘要With the advent of Grubbs catalysts, Ring-opening metathesis polymerization (ROMP) has become one of the most powerful methods in polymer synthesis. Based on ruthenium, those Grubbs catalysts have many advantages, such as high reactivity, high functional group tolerance and living polymerization character, which make ROMP capable of synthesizing kinds of polymer that could not be able to synthesize by other methods, such as conjugated polymers, bioactive polymers, bottlebrush polymers, telechelic polymers, cyclic polymers, and so on. High-performance polymeric materials have always been the main topic of polymer synthesis chemistry. In this doctoral dissertation, we designed and synthesized several novel high-performance polymeric materials by ROMP utilizing Grubbs catalysts. The performances of these synthesized polymeric materials were systemic investigated. The main results are listed as follows: (1) Novel cyclic olefin polymers (COPs) derived from bulky cyclic olefin, exo-1,4,4a,9,9a,10-hexahydro-9,10(1’,2’)-benzeno-l,4-methanoanthracene (HBM), with high glass-transition temperature (Tg), excellent thermal stability, high transparency and improved mechanical performance, have been achieved by ROMP and subsequent hydrogenation. The “first generation Grubbs” catalyst, RuCl2(PCy3)2(CHPh) (Cy = cyclohexyl) (G1), displays very high activity for homo/co-polymerization with complete conversion. Homopolymer of the HBM after complete hydrogenation showed a highest Tg = 223.6 °C. Copolymerization of HBM with tricyclo[4.3.0.12,5]deca-3-ene or 5-n-hexylnorbornene were also carried out. These two series COPs were characterized by GPC, NMR, DSC, and TGA. The Tg of the resulted COPs linear increased with HBM content, which is easily controlled by changing feed ratios. The tensile test indicates that these copolymers have good mechanical performance, as all this copolymers show a higher strain at break compared with commercial products (TOPAS?). (2) Novel COPs with excellent transparency and high Tg synthesized from bulky norbornene derivative, HBM, and cis-cyclooctene (COE) by ring-opening metathesis copolymerization utilizing G1, and subsequent hydrogenation was reported herein. To get amorphous copolymers, it was of great importance to control the feed ratios and the polymerization time for gradient copolymerization. All of these copolymers showed very high Tgs (141.1-201.2 °C), which varied with the content of HBM. The films of the gradient copolymers with only one Tg were highly transparent. On the contrary, all the block copolymers synthesized through sequential addition showed two thermal transition temperatures, Tg and melt temperature (Tm), and the films of these block copolymers were opaque. The mechanical performances of the COPs were also investigated. It is the first report that transparent COP could be prepared from bulky norbornene derivative and monocyclic olefin. (3) A series of ABA or ABC triblock copolymers based thermoplastic elastomers (TPEs) were synthesized by living ROMP utilizing the Grubbs third generation catalyst RuCl2(3-bromopyridine)2(H2IMes)(CHPh) (G3, H2IMes = N,N-dimesityl-4,5-dihydroimidazol-2-ylidene) and subsequent hydrogenation. By introducing crystalline block into both end of soft block, improved tensile strength and elastic recovery were observed. Furthermore, TPE with both the crystalline and high Tg hard blocks showed the best tensile strength and the best elastic recovery (up to 93.5 %). (4) A simple design of hard-soft diblock and hard-soft-hard triblock copolymers based TPEs that combine good mechanical performances with autonomic healing capability is achieved. Those block copolymers were synthesized by living ROMP through one-pot sequential addition of bulky monomer and a “soft” monomer with secondary amide group for weak hydrogen bonding utilizing G3. The mechanical properties were mainly studied by monotonic and step cyclic tensile tests. As assumed, the mechanical properties were greatl
语种中文
公开日期2016-05-03
源URL[http://ir.ciac.jl.cn/handle/322003/64475]  
专题长春应用化学研究所_长春应用化学研究所知识产出_学位论文
推荐引用方式
GB/T 7714
杨继兴. 基于ROMP的新型高分子材料:设计、合成及性能研究[D]. 中国科学院长春应用化学研究所. 中国科学院研究生院. 2015.

入库方式: OAI收割

来源:长春应用化学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。