新型微孔有机聚合物的制备与性能研究
文献类型:学位论文
作者 | 杨延琴 |
学位类别 | 博士 |
答辩日期 | 2015-04 |
授予单位 | 中国科学院研究生院 |
授予地点 | 中国科学院长春应用化学研究所 |
导师 | 张所波 |
关键词 | 微孔有机聚合物 气体吸附与分离 油水分离 非均相催化 纳滤膜 |
中文摘要 | 微孔有机聚合物由于具有高的比表面积、优异的热稳定性和化学稳定性、低的骨架密度等优势,在气体吸附与储存、分子分离、非均相催化和储能等领域显示出良好的应用前景。但目前大多数微孔有机聚合物主要面临着两个问题:1)不含官能团,因而难以满足某些特定的需求;2)难以加工成膜。本论文以解决这两个问题为目标,通过分子设计成功得到了一系列官能化的微孔有机聚合物,并尝试采用新型的成膜工艺将其加工成膜。具体研究包括以下几个方面: 1、设计合成了分别含有季磷盐、三苯基膦和三苯基氧化膦官能团的聚合物PP-Br、PP-P和PP-PO,比表面积分别为650、1284 和1353 m2 g-1,其中PP-Br的比表面积可以通过改变负离子的种类来调节,例如PP-Cl和PP-F的比表面积分别为750和980 m2 g-1。不同官能团的引入赋予了三种聚合物各自独特的性质:由于P=O与CO2分子具有强相互作用,PP-P-O具有高的CO2吸附量(3.70 mmol g-1);由于PP-Br中含有季磷阳离子,可以用来催化CO2与环氧化物的环加成反应(140℃反应20 h后产率为98%);PP-P可以被固载Pd0纳米粒子,得到聚合物-金属复合物,其催化Suzuki偶联反应时具有高的催化活性(碘代物、溴代物和氯代物参与反应时产率98%以上,氟代物反应时产率64.5%)。 2、含有氮原子的两个微孔有机共聚物系列PP-N-x和PBP-N-x(x为共聚单体中三苯胺的摩尔百分数)分别由三苯胺与1,4-二氯甲基苯或4,4’-二氯甲基联苯发生联合的氧化偶联和Friedel-Crafts烷基化反应得到。由于具有高的微孔表面积、微孔体积及含氮的骨架结构,PP-N-25的CO2吸附量高达4.60 mmol g-1。与PP-N-x相比,PBP-N-x具有更高的比表面积和疏水性,可以吸附更多的非极性溶剂。PBP-N-50、PP-N-50分别比PBP-N-25、PP-N-25具有高的孔体积和低的交联度,因而具有更高的液态溶剂吸附能力。 3、从联萘二酐、磺化联萘二酐和四(4-氨基苯基)甲烷出发,合成了一系列新型的微孔聚酰亚胺SMPI-x(x是磺化联萘二酐占二酐总量的摩尔百分数)。非磺化聚酰亚胺SMPI-0的BET比表面积为574 m2 g-1,CO2吸附量为2.53 mmol g-1,而磺化聚合物,即SMPI-10、SMPI-50和SMPI-100,虽然BET比表面积较低(23~112 m2 g-1),但具有高的CO2 吸附量(2.82~3.15 mmol g-1)和 CO2/N2 选择性(32~57)。随着磺化度的增加,聚合物逐渐由憎水性变为亲水性。憎水的SMPI-0和SMPI-10可以吸附大量非极性的苯蒸汽(SMPI-0的吸附量为134.7 wt%,SMPI-10的吸附量为104.7 wt%)和环己烷蒸汽(SMPI-0的吸附量为42.5 wt%,SMPI-10的吸附量为42.8 wt%);亲水的SMPI-50和SMPI-100 可以吸附更多极性的甲醇蒸汽(SMPI-50的吸附量为68.5 wt%,SMPI-50的吸附量为72.2 wt%)。 4、我们从两种含有吡咯官能团的单体出发,通过FeCl3催化下的氧化偶联反应合成了微孔有机聚合物PTNPM和PTNPP。由于具有类似金刚石网络骨架的拓扑结构,PTNPM(1408 m2 g-1)的BET比表面积高于PTNPP(828 m2 g-1)的比表面积。由于具有含N的骨架结构,PTNPM(2.69 mmol g-1)和PTNPP(1.96 mmol g-1)均具有高的CO2吸附量。此外,由于吡咯基团在强酸环境下可以发生自聚合反应,我们通过CF3COOH催化的溶胶-凝胶法合成了新型的微孔聚合物膜。 5、我们由丙烯酸丙烯腈共聚物和含咪唑盐的聚阳离子出发,通过共混膜合成、浸泡稀氨水两步法来合成多孔聚电解质复合物膜。得到的膜具有良好的机械性能,它们的拉伸强度在6.71~23.7 MPa,断裂伸长率在15~59%。在浸泡氨水的过程中,膜逐渐发生溶胀,聚阴离子中的-COOH在NH3?H2O的作用下去质子化变为-COO?,并与邻近的咪唑阳离子发生离子交联,产生多孔结构。膜表面Zeta电势显示膜在中性条件下是带负电的。膜对无机盐具有中等强度的截留,截留按照Na2SO4 > NaCl > MgCl2的顺序依次减小, 膜对有机燃料甲基橙的截留高达99.9%。 |
英文摘要 | Microporous organic polymers, which possess high surface area, good thermal and chemical stability, and low skeleton density, have attracted enormous scientific attention due to their potential applications in the areas of gas capture and storage, separation, and heterogeneous catalysis. However, most of the microporous organic polymers synthesized till date are intractable solid. Processability of the networks into thin films or incorporation any functional groups or active sites are difficult. This dissertation focuses on solving these two problems by designing a series of functionalized microporous organic polymers and trying out new methods to prepare porous membranes. (1) Quaternary phosphonium, phosphine, and phosphine oxide functionalized networks (denoted as PP-Br, PP-P and PP-PO, respectively) were synthesized and displayed high surface areas (650 m2 g-1 for PP-Br, 1284 m2 g-1 for PP-P, and 1353 m2 g-1 for PP-PO). The surface area of PP-Br can be tuned by changing the counteranions. The apparent BET specific surface areas rose to 750 and 980 m2 g-1 as the Br? anion was changed to Cl? or F? by ionic exchange. Because of the incorporation of functional groups, the polymers possessed unique properties. Due to the strong interactions between CO2 molecules and the phosphine oxide groups, the PP-PO showed high volumetric CO2 uptake capacity (3.70 mmol g-1). PP-Br displayed high intrinsic catalytic activity for the reaction between epoxide and CO2 and a 98% yield was obtained at 140 °C for 20 h. Pd nanoparticles supported on PP-P were prepared, which exhibited high catalytic activity for Suzuki reactions. The coupling reaction between aryl iodides, bromides or chlorides and p-tolyboronic acid gave the desired product of over 98% conversion in the presence of PP-P-Pd. More importantly, a yield of 64.5% was obtained when fluorobenzene was used as reactant. (2) Two series of novel porous copolymers PP-N-x and PBP-N-x (x is the molar percent of triphenylamine) were synthesized from triphenylamine and dichloro-p-xylene or 4,4’-bis(chloromethyl)biphenyl by using a combination of oxidative polymerization and Friedel-Crafts alkylation process promoted by anhydrous FeCl3. Due to the high microporous surface area, large microporous volume, as well as nitrogen containing structure, PP-N-25 possessed a CO2 uptake capacity of 4.60 mmol g-1. Due to their higher hydrophobicity and surface areas, PBP-N-x possessed higher C6 organic vapor uptake capacities than those of PP-N-x. Thanks to the larger pore volumes and swellability, PBP-N-50 and PP-N-50 have higher C6 liquid uptake capacities than those of PBP-N-25 and PP-N-25. (3) A series of novel microporous polyimides (SMPI-x, x is the molar percent of SBTDA) were synthesized from 4,4’-binaphthyl-1,1’,8,8’-tetracarboxylic dianhydride (BTDA), 6,6’-disulfonic-4,4’-binaphthyl-1,1’,8,8’-tetracarboxylic dianhydride (SBTDA) and tetrakis(4-aminophenyl)methane (TAPM). The non-sulfonated SMPI-0 exhibited BET surface area of 574 m2 g-1 and CO2 uptake capacity of 2.53 mmol g-1, while sulfonated samples, i.e. SMPI-10, SMPI-50 and SMPI-100, possessed relatively low BET surface areas (from 23 to 112 m2 g-1) but high CO2 capture capacities (from 2.82 to 3.15 mmol g-1) and CO2/N2 selectivities (from 32 to 57). With the increasing of sulfonation degree, the polymers graded from hydrophobic to hydrophilic. Hydrophobic SMPI-0 and SMPI-10 adsorbed a large amount of non-polar benzene (134.7 wt% for SMPI-0 and 104.7 wt% for SMPI-10) and cyclohexane (42.5 wt% for SMPI-0 and 42.8 wt% for SMPI-10) vapors, whereas hydrophilic SMPI-50 and SMPI-100 captured more polar methanol (68.5 wt% for SMPI-50 and 72.2 wt% for SMPI-100). (4) Two types of microporous polymeric networks have been prepared from monomers containing N-tert-butoxycarbonyl-protected pyrrole by FeCl3-mediated oxidative coupling polymerization. These materials were predominantly microporous (with BET surface areas of 828 m2 g-1 and 1408 m2 g-1), exhibiting high CO2 uptake capacities (1.96 mmol g-1 and 2.69 mmol g-1 at 273 K, 1 bar). Novel microporous polymeric films (with BET surface areas of 570 m2 g-1 and 593 m2 g-1) were fabricated through in situ polymerization of monomers on a flat glass dish using a sol-gel process catalyzed by trifluoroacetic acid. (5) Polyelectrolyte complex membranes were prepared from poly(acrylic acid-co-acrylonitrile)s and imidazolium-based polycation via a combination of blend film casting and ammonia solution immersion procedure. The membranes were free-standing and tough, showing excellent mechanical properties (with tensile strength of 6.71-23.7 MPa and elongation at break of 15-59%). Hierarchically structured nanopores were formed in the membranes during the ammonia soaking step, due to NH3–triggered –COOH deprotonation and in situ ionic crosslinking with polycation. Zeta potential measurements indicated that the membranes were negatively charged under neutral conditions. The membranes exhibited moderate rejection to salts in the order of Na2SO4 > NaCl > MgCl2, but high rejection to methyl orange (>99.9%). |
语种 | 中文 |
公开日期 | 2016-05-03 |
源URL | [http://ir.ciac.jl.cn/handle/322003/64496] ![]() |
专题 | 长春应用化学研究所_长春应用化学研究所知识产出_学位论文 |
推荐引用方式 GB/T 7714 | 杨延琴. 新型微孔有机聚合物的制备与性能研究[D]. 中国科学院长春应用化学研究所. 中国科学院研究生院. 2015. |
入库方式: OAI收割
来源:长春应用化学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。