Experimental studies the burning process of gelled unsymmetrical dimethylhydrazine droplets under oxidant convective conditions
文献类型:期刊论文
; | |
作者 | Feng, SJ; He, B; He, HB; Su, LY; Hou, ZY; Nie, WS; Guo, XH;郭喜红 |
刊名 | FUEL
![]() ![]() |
出版日期 | 2013 ; 2013 |
卷号 | 111页码:367-373 |
关键词 | Organic gel propellant UDMH Burning behavior Flame structure Oxidizer convective environment Organic gel propellant UDMH Burning behavior Flame structure Oxidizer convective environment |
ISSN号 | 0016-2361 |
DOI | 10.1016/j.fuel.2013.03.071 |
英文摘要 | Gelled hypergolic propellants offer potential safety and performance improvements over conventional liquid and solid propellants. Understanding the combustion process of single gelled droplets is the first basic step to predict their behavior in the future combustion chambers. Experimental studies were performed to investigate the burning behavior of gelled unsymmetrical dimethylhydrazine (UDMH) droplets under oxidant convective conditions. The effects of oxidant convective conditions including velocity and temperature on the burning behavior were analyzed. The burning process was broken down into four stages: heating and swelling period, initial combustion period, violent combustion period, and stable and extinguished combustion period. Sometimes the droplet inside seemed to be porous or botryoidal. The microexplosion period lasted for a long time sometimes exceeding about 70% of the burning lifetime, and the phenomenon of gas jet combustion due to the burst steam from microexplosions was founded. The conversion of burning flame from a layered and enveloped flame structure to an escaped flame structure with increase in the convective velocity was observed. When the enveloped flame appeared, it was more helpful to the burning process, and the intensity of microexplosions and the burning rate constant were found to increase with the convective temperature. When the escaped flame appeared, it was disadvantageous to the burning process, and the intensity of microexplosions decreases with rise in convective velocity. Compared with the escaped flame, the intensity of microexplosions of the enveloped flame was lower, but the frequency was higher. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.; Gelled hypergolic propellants offer potential safety and performance improvements over conventional liquid and solid propellants. Understanding the combustion process of single gelled droplets is the first basic step to predict their behavior in the future combustion chambers. Experimental studies were performed to investigate the burning behavior of gelled unsymmetrical dimethylhydrazine (UDMH) droplets under oxidant convective conditions. The effects of oxidant convective conditions including velocity and temperature on the burning behavior were analyzed. The burning process was broken down into four stages: heating and swelling period, initial combustion period, violent combustion period, and stable and extinguished combustion period. Sometimes the droplet inside seemed to be porous or botryoidal. The microexplosion period lasted for a long time sometimes exceeding about 70% of the burning lifetime, and the phenomenon of gas jet combustion due to the burst steam from microexplosions was founded. The conversion of burning flame from a layered and enveloped flame structure to an escaped flame structure with increase in the convective velocity was observed. When the enveloped flame appeared, it was more helpful to the burning process, and the intensity of microexplosions and the burning rate constant were found to increase with the convective temperature. When the escaped flame appeared, it was disadvantageous to the burning process, and the intensity of microexplosions decreases with rise in convective velocity. Compared with the escaped flame, the intensity of microexplosions of the enveloped flame was lower, but the frequency was higher. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved. |
学科主题 | Energy & Fuels; Engineering ; Energy & Fuels; Engineering |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000321037600044 ; WOS:000321037600044 |
公开日期 | 2016-05-03 |
源URL | [http://ir.ihep.ac.cn/handle/311005/223956] ![]() |
专题 | 高能物理研究所_多学科研究中心 |
推荐引用方式 GB/T 7714 | Feng, SJ,He, B,He, HB,et al. Experimental studies the burning process of gelled unsymmetrical dimethylhydrazine droplets under oxidant convective conditions, Experimental studies the burning process of gelled unsymmetrical dimethylhydrazine droplets under oxidant convective conditions[J]. FUEL, FUEL,2013, 2013,111, 111:367-373, 367-373. |
APA | Feng, SJ.,He, B.,He, HB.,Su, LY.,Hou, ZY.,...&Guo, XH;郭喜红.(2013).Experimental studies the burning process of gelled unsymmetrical dimethylhydrazine droplets under oxidant convective conditions.FUEL,111,367-373. |
MLA | Feng, SJ,et al."Experimental studies the burning process of gelled unsymmetrical dimethylhydrazine droplets under oxidant convective conditions".FUEL 111(2013):367-373. |
入库方式: OAI收割
来源:高能物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。