中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating

文献类型:期刊论文

作者Zhang, RY (张瑞英); Dong, JR (董建荣); Zhang, RY (张瑞英); Yang, H (杨辉)
刊名JOURNAL OF APPLIED PHYSICS
出版日期2011-12-01
卷号110期号:11
通讯作者Zhang, RY (张瑞英)
英文摘要1 mu m thick Si solar cells based on nanocone grating (NCG) with height of 100-800 nm and period of 100, 500, and 800 nm are numerically investigated through reflectivities, absorption enhancement factors, absorption spectra, optical generation rates, ultimate efficiencies, and diffraction angles. Compared with the planar Si solar cell, absorption enhancement are observed in any solar cells with NCG surface. Their absorption enhancement mechanism varies with the incident wavelength range. When incident wavelength lambda < 500 nm, antireflection of their front surface dominates the absorption enhancement behavior due to their stronger absorption coefficients. When 600 nm > lambda > 500 nm, even though the absorption enhancement is still dominated by antireflection of the front surface, cavity-resonance effect and guided-mode excitation induced by high order diffraction start to make contribution. When lambda > 600 nm, the contribution of guided-mode excitation induced by lower-order diffraction becomes larger and larger once the diffraction angle is larger than its critical angle. For the structure with P = 100 nm, high-order diffraction cut-off at the longer wavelength range is the main reason of its lower absorption enhancement and ultimate conversion efficiency. For P = 800 nm, the lower absorption enhancement and ultimate efficiency is also observed due to the high reflection loss and mode leakage induced by 1(st) order diffraction where its diffraction angle is lower than its critical angle. Higher absorption and ultimate conversion efficiencies are achieved in P = 500 nm due to the good balance between antireflection performance and guide-mode excitation induced by the high order diffraction is achieved. Moreover, such absorption enhancement is closely related with its height of NCG gratings. Reflection loss reduction, the interaction volume reduction between the incident light and Si material, and higher photon density in NCG structure coexists with H increasing, which results in absorption enhancement in P = 500 nm and P = 800 nm, but absorption reduction in P = 100 nm where high order diffraction cut-off. Based on these analysis, we do believe that high absorption and ultimate conversion efficiency should be achieved in NCG-based solar cells where both the lower reflection in short wavelength domain and guide-mode excitation induced by 1(st) and 2(nd) diffraction in longer wavelength domain can be achieved. According to this rule, the optimized structure is NCG with P = 559 nm and H = 500 nm, by which, the highest optical generation rate of 536.57 x 10(4) W/cm(3) and ultimate efficiency of 28.132% are achieved. Such analysis should benefit the design of the thin film solar cells with nano-structured diffraction gratings.
收录类别SCI ; EI
语种英语
WOS记录号WOS:000298254800006
公开日期2012-07-25
源URL[http://58.210.77.100/handle/332007/524]  
专题苏州纳米技术与纳米仿生研究所_纳米器件及相关材料研究部_董建荣团队
通讯作者Zhang, RY (张瑞英); Zhang, RY (张瑞英)
推荐引用方式
GB/T 7714
Zhang, RY ,Dong, JR ,Zhang, RY ,et al. Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating[J]. JOURNAL OF APPLIED PHYSICS,2011,110(11).
APA Zhang, RY ,Dong, JR ,Zhang, RY ,&Yang, H .(2011).Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating.JOURNAL OF APPLIED PHYSICS,110(11).
MLA Zhang, RY ,et al."Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating".JOURNAL OF APPLIED PHYSICS 110.11(2011).

入库方式: OAI收割

来源:苏州纳米技术与纳米仿生研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。