Visual Tracking Based on Dynamic Coupled Conditional Random Field Model
文献类型:期刊论文
作者 | Liu, Yuqiang1,2![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
![]() |
出版日期 | 2016-03-01 |
卷号 | 17期号:3页码:822-833 |
关键词 | Coupled conditional random field dynamic models visual tracking region-level tracking spatiotemporal context |
通讯作者 | Wang, Kunfeng(王坤峰) |
英文摘要 | This paper proposes a novel approach to visual tracking of moving objects based on the dynamic coupled conditional random field (DcCRF) model. The principal idea is to integrate a variety of relevant knowledge about object tracking into a unified dynamic probabilistic framework, which is called the DcCRF model in this paper. Under this framework, the proposed approach integrates spatiotemporal contextual information of motion and appearance, as well as the compatibility between the foreground label and object label. An approximate inference algorithm, i.e., loopy belief propagation, is adopted to conduct the inference. Meanwhile, the background model is adaptively updated to deal with gradual background changes. Experimental results show that the proposed approach can accurately track moving objects (with or without occlusions) in monocular video sequences and outperforms some state-of-the-art methods in tracking and segmentation accuracy. |
WOS标题词 | Science & Technology ; Technology |
学科主题 | CIVIL ENGINEERING |
类目[WOS] | Engineering, Civil ; Engineering, Electrical & Electronic ; Transportation Science & Technology |
研究领域[WOS] | Engineering ; Transportation |
关键词[WOS] | VEHICLE DETECTION ; OBJECT TRACKING ; SEGMENTATION ; VIDEO ; INFORMATION ; INTEGRATION ; OCCLUSIONS ; BEHAVIOR ; FLOW |
收录类别 | SCI |
原文出处 | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7307175&filter%3DAND%28p_IS_Number%3A7420563%29 |
语种 | 英语 |
WOS记录号 | WOS:000371982600019 |
源URL | [http://ir.ia.ac.cn/handle/173211/10860] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队 |
通讯作者 | Wang, Kunfeng(王坤峰) |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China 2.Qingdao Acad Intelligent Ind, Qingdao 266109, Peoples R China 3.Natl Univ Def Technol, Res Ctr Computat Expt & Parallel Syst, Changsha 410073, Hunan, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Yuqiang,Wang, Kunfeng,Shen, Dayong,et al. Visual Tracking Based on Dynamic Coupled Conditional Random Field Model[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2016,17(3):822-833. |
APA | Liu, Yuqiang,Wang, Kunfeng,Shen, Dayong,&Wang, Kunfeng.(2016).Visual Tracking Based on Dynamic Coupled Conditional Random Field Model.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,17(3),822-833. |
MLA | Liu, Yuqiang,et al."Visual Tracking Based on Dynamic Coupled Conditional Random Field Model".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 17.3(2016):822-833. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。