中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Real-Time Data Assimilation for Improving Linear Municipal Solid Waste Prediction Model: A Case Study in Seattle

文献类型:期刊论文

作者Song, Jingwei1; He, Jiaying1; Zhen, Jing1
刊名JOURNAL OF ENERGY ENGINEERING
出版日期2015
卷号141期号:4页码:735-744
关键词Municipal solid waste Data assimilation Kalman filter Seasonal autoregressive integrated moving average (SARIMA) Time series forecast
通讯作者Song, JW (reprint author), Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, 9 Dengzhuang South Rd, Beijing 100094, Peoples R China.
英文摘要A commonly used data assimilation (DA) algorithm, Kalman filter, is integrated with the seasonal autoregressive integrated moving average (SARIMA) model to make a one-step forecast of monthly municipal solid waste (MSW) generation in Seattle. The DA solves the problem that parameters of the forecasting model need to be updated in every forecasting process. The performances of prediction models are compared using mean absolute percentage error (MAPE), root-mean-square-error (RMSE), and 95% confidence interval. The MAPE of the SARIMA model with DA is 0.0422, whereas the MAPE of the SARIMA without DA is 0.0914. A 95% confidence interval of SARIMA without DA keeps increasing, whereas SARIMA with DA remains constant, which means DA raises the stability of SARIMA as time progresses. Results show that DA enables the same MSW prediction model with more accurate and more robust forecast results. The SARIMA parameter updating cycle can be prolonged, which saves time and effort. (C) 2014 American Society of Civil Engineers.
研究领域[WOS]Energy & Fuels ; Engineering, Civil
收录类别SCI ; EI
语种英语
WOS记录号WOS:000365120400006
源URL[http://ir.ceode.ac.cn/handle/183411/38058]  
专题遥感与数字地球研究所_SCI/EI期刊论文_期刊论文
作者单位1.[Song, Jingwei
2.Zhen, Jing] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
3.[Song, Jingwei
4.Zhen, Jing] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
5.[He, Jiaying] Univ Georgia, Dept Geog, Ctr Geospatial Res, Athens, GA 30602 USA
推荐引用方式
GB/T 7714
Song, Jingwei,He, Jiaying,Zhen, Jing. Real-Time Data Assimilation for Improving Linear Municipal Solid Waste Prediction Model: A Case Study in Seattle[J]. JOURNAL OF ENERGY ENGINEERING,2015,141(4):735-744.
APA Song, Jingwei,He, Jiaying,&Zhen, Jing.(2015).Real-Time Data Assimilation for Improving Linear Municipal Solid Waste Prediction Model: A Case Study in Seattle.JOURNAL OF ENERGY ENGINEERING,141(4),735-744.
MLA Song, Jingwei,et al."Real-Time Data Assimilation for Improving Linear Municipal Solid Waste Prediction Model: A Case Study in Seattle".JOURNAL OF ENERGY ENGINEERING 141.4(2015):735-744.

入库方式: OAI收割

来源:遥感与数字地球研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。