中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Support Vector Machine-Based Particle Filter Method for Improved Flooding Classification

文献类型:期刊论文

作者Insom, Patcharin1; Cao, Chunxiang1; Boonsrimuang, Pisit1; Liu, Di1; Saokarn, Apitach1; Yomwan, Peera1; Xu, Yunfei1
刊名IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
出版日期2015
卷号12期号:9页码:414-425
关键词Flooding classification particle filter (PF) Radarsat support vector machine (SVM)
通讯作者Insom, P (reprint author), Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100094, Peoples R China.
英文摘要Support vector machines (SVMs) have been applied to land cover classification, and a number of studies have demonstrated their ability to increase classification accuracy. The high correlation between the data set and SVM training model parameters indicates the high performance of the classification model. To improve the correlation, research has focused on the integration of SVMs and other algorithms for data set selection and SVM training model parameter estimation. This letter proposes a novel method, based on a particle filter (PF), of estimating SVM training model parameters according to an observation system. By treating the SVM training function as the observation system of the PF, the new method automatically updates the SVM training model parameters to values that are more appropriate for the data set and can provide a better classification model than can the original model, wherein the parameters are set by trial and error. Various experiments were conducted using Radarsat-2 synthetic aperture radar data from the 2011 Thailand flood. The proposed method provides superior performance and a more accurate analysis compared with the standard SVM.
研究领域[WOS]Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
收录类别SCI ; EI
语种英语
WOS记录号WOS:000359579000029
源URL[http://ir.ceode.ac.cn/handle/183411/38127]  
专题遥感与数字地球研究所_SCI/EI期刊论文_期刊论文
作者单位1.[Insom, Patcharin
2.Cao, Chunxiang
3.Liu, Di
4.Saokarn, Apitach
5.Xu, Yunfei] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100094, Peoples R China
6.[Insom, Patcharin
7.Liu, Di
8.Saokarn, Apitach] Univ Chinese Acad Sci, Beijing 100094, Peoples R China
9.[Boonsrimuang, Pisit] King Mongkuts Inst Technol Ladkrabang, Fac Engn, Telecommun Engn Dept, Bangkok 10520, Thailand
10.[Saokarn, Apitach] Royal Thai Survey Dept, Bangkok 10520, Thailand
推荐引用方式
GB/T 7714
Insom, Patcharin,Cao, Chunxiang,Boonsrimuang, Pisit,et al. A Support Vector Machine-Based Particle Filter Method for Improved Flooding Classification[J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2015,12(9):414-425.
APA Insom, Patcharin.,Cao, Chunxiang.,Boonsrimuang, Pisit.,Liu, Di.,Saokarn, Apitach.,...&Xu, Yunfei.(2015).A Support Vector Machine-Based Particle Filter Method for Improved Flooding Classification.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,12(9),414-425.
MLA Insom, Patcharin,et al."A Support Vector Machine-Based Particle Filter Method for Improved Flooding Classification".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 12.9(2015):414-425.

入库方式: OAI收割

来源:遥感与数字地球研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。