Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries
文献类型:期刊论文
作者 | Zheng, Jiaxin1; Hou, Yuyang2,3,4; Duan, Yandong; Song, Xiaohe1; Wei, Yi1; Liu, Tongchao1; Hu, Jiangtao1; Guo, Hua1; Zhuo, Zengqing1; Liu, Lili3,4 |
刊名 | NANO LETTERS
![]() |
出版日期 | 2015-09-01 |
卷号 | 15期号:9页码:6102-6109 |
关键词 | LiFePO4 rate performance aqueous electrolyte organic electrolyte solid-liquid interface ab initio calculations |
英文摘要 | LiFePO4 has long been held as one of the most promising battery cathode for its high energy storage capacity. Meanwhile, although extensive studies have been conducted on the interfacial chemistries in Li-ion batteries,(1-3) little is known on the atomic level about the solid-liquid interface of LiFePO4/electrolyte. Here, we report battery cathode consisted with nanosized LiFePO4 particles in aqueous electrolyte with an high charging and discharging rate of 600 C (3600/600 = 6 s charge time, 1 C = 170 mAh g(-)1) reaching 72 mAh g(-1) energy storage (42% of the theoretical capacity). By contrast, the accessible capacity sharply decreases to 20 mAh g(-1) at 200 C in organic electrolyte. After a comprehensive electrochemistry tests and ab initio calculations of the LiFePO4-H2O and LiFePO4-EC (ethylene carbonate) systems, we identified the transient formation of a Janus hydrated interface in the LiFePO4-H2O system, where the truncated symmetry of solid LiFePO4 surface is compensated by the chemisorbed H2O molecules, forming a half-solid (LiFePO4) and half-liquid (H2O) amphiphilic coordination environment that eases the Li desolvation process near the surface, which makes a fast Li-ion transport across the solid/liquid interfaces possible. |
收录类别 | SCI |
语种 | 英语 |
公开日期 | 2016-05-09 |
源URL | [http://ir.iccas.ac.cn/handle/121111/28391] ![]() |
专题 | 化学研究所_光化学实验室 |
作者单位 | 1.Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China 2.Nanjing Tech Univ, Coll Energy, Nanjing 211816, Jiangsu, Peoples R China 3.Fudan Univ, Dept Chem, New Energy & Mat Lab, Shanghai 200433, Peoples R China 4.Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China 5.Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA 6.Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Key Lab Photochem, Beijing 100190, Peoples R China 7.US Army, Res Lab, Electrochem Branch, Adelphi, MD 20783 USA |
推荐引用方式 GB/T 7714 | Zheng, Jiaxin,Hou, Yuyang,Duan, Yandong,et al. Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries[J]. NANO LETTERS,2015,15(9):6102-6109. |
APA | Zheng, Jiaxin.,Hou, Yuyang.,Duan, Yandong.,Song, Xiaohe.,Wei, Yi.,...&Pan, Feng.(2015).Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries.NANO LETTERS,15(9),6102-6109. |
MLA | Zheng, Jiaxin,et al."Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries".NANO LETTERS 15.9(2015):6102-6109. |
入库方式: OAI收割
来源:化学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。