Robust Visual Tracking via Exclusive Context Modeling
文献类型:期刊论文
作者 | Zhang, Tianzhu1,2![]() ![]() |
刊名 | IEEE TRANSACTIONS ON CYBERNETICS
![]() |
出版日期 | 2016 |
卷号 | 46期号:1页码:51-63 |
关键词 | Contextual information exclusive sparse learning particle filter tracking |
英文摘要 | In this paper, we formulate particle filter-based object tracking as an exclusive sparse learning problem that exploits contextual information. To achieve this goal, we propose the context-aware exclusive sparse tracker (CEST) to model particle appearances as linear combinations of dictionary templates that are updated dynamically. Learning the representation of each particle is formulated as an exclusive sparse representation problem, where the overall dictionary is composed of multiple group dictionaries that can contain contextual information. With context, CEST is less prone to tracker drift. Interestingly, we show that the popular L-1 tracker [1] is a special case of our CEST formulation. The proposed learning problem is efficiently solved using an accelerated proximal gradient method that yields a sequence of closed form updates. To make the tracker much faster, we reduce the number of learning problems to be solved by using the dual problem to quickly and systematically rank and prune particles in each frame. We test our CEST tracker on challenging benchmark sequences that involve heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that CEST consistently outperforms state-of-the-art trackers. |
WOS标题词 | Science & Technology ; Technology |
类目[WOS] | Computer Science, Artificial Intelligence ; Computer Science, Cybernetics |
研究领域[WOS] | Computer Science |
关键词[WOS] | OBJECT TRACKING ; OCCLUSION DETECTION |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000367144300006 |
源URL | [http://ir.ia.ac.cn/handle/173211/10648] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队 |
作者单位 | 1.Adv Digital Sci Ctr, Singapore 138632, Singapore 2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China 3.King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia 4.Chinese Acad Sci, Inst Informat Engn, Beijing 100190, Peoples R China 5.Univ Illinois, Beckman Inst, Dept Elect & Comp Engn, Coordinated Sci Lab, Urbana, IL 61801 USA |
推荐引用方式 GB/T 7714 | Zhang, Tianzhu,Ghanem, Bernard,Liu, Si,et al. Robust Visual Tracking via Exclusive Context Modeling[J]. IEEE TRANSACTIONS ON CYBERNETICS,2016,46(1):51-63. |
APA | Zhang, Tianzhu,Ghanem, Bernard,Liu, Si,Xu, Changsheng,&Ahuja, Narendra.(2016).Robust Visual Tracking via Exclusive Context Modeling.IEEE TRANSACTIONS ON CYBERNETICS,46(1),51-63. |
MLA | Zhang, Tianzhu,et al."Robust Visual Tracking via Exclusive Context Modeling".IEEE TRANSACTIONS ON CYBERNETICS 46.1(2016):51-63. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。