中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
MSDLSR: Margin Scalable Discriminative Least Squares Regression for Multi-category Classification

文献类型:期刊论文

作者Wang, Lingfeng; Zhang, Xuyao; Pan, Chunhong
刊名IEEE Transactions on Neural Networks and Learning Systems
出版日期2015-10
页码1-7
关键词Discriminative least squares regression (DLSR), least squares regression (LSR), multicategory classification.
英文摘要In this brief, we propose a new margin scalable discriminative least squares regression (MSDLSR) model for multicategory classification. The main motivation behind the MSDLSR is to explicitly control the margin of DLSR model. We first prove that the DLSR is a relaxation of the traditional L₂-support vector machine. Based on this fact, we further provide a theorem on the margin of DLSR. With this theorem, we add an explicit constraint on DLSR to restrict the number of zeros of dragging values, so as to control the margin of DLSR. The new model is called MSDLSR. Theoretically, we analyze the determination of the margin and support vectors of MSDLSR. Extensive experiments illustrate that our method outperforms the current state-of-the-art approaches on various machine leaning and real-world data sets.
收录类别SCI
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/10723]  
专题自动化研究所_模式识别国家重点实验室_遥感图像处理团队
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Wang, Lingfeng,Zhang, Xuyao,Pan, Chunhong. MSDLSR: Margin Scalable Discriminative Least Squares Regression for Multi-category Classification[J]. IEEE Transactions on Neural Networks and Learning Systems,2015:1-7.
APA Wang, Lingfeng,Zhang, Xuyao,&Pan, Chunhong.(2015).MSDLSR: Margin Scalable Discriminative Least Squares Regression for Multi-category Classification.IEEE Transactions on Neural Networks and Learning Systems,1-7.
MLA Wang, Lingfeng,et al."MSDLSR: Margin Scalable Discriminative Least Squares Regression for Multi-category Classification".IEEE Transactions on Neural Networks and Learning Systems (2015):1-7.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。