中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Adaptive Optimal Control of Highly Dissipative Nonlinear Spatially Distributed Processes With Neuro-Dynamic Programming

文献类型:期刊论文

作者Luo, Biao1,2; Wu, Huai-Ning1; Li, Han-Xiong3
刊名IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
出版日期2015-04-01
卷号26期号:4页码:684-696
关键词Adaptive optimal control empirical eigenfunction (EEF) highly dissipative partial differential equations (PDEs) neuro-dynamic programming (NDP) spatially distributed processes (SDPs)
英文摘要Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loeve decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
研究领域[WOS]Computer Science ; Engineering
关键词[WOS]DISCRETE-TIME-SYSTEMS ; HYPERBOLIC PDE SYSTEMS ; FINITE-DIMENSIONAL APPROXIMATION ; OPTIMAL TRACKING CONTROL ; OUTPUT-FEEDBACK CONTROL ; PARAMETER-SYSTEMS ; MODEL-REDUCTION ; ROBUST-CONTROL ; ITERATION ALGORITHM ; STABILIZATION
收录类别SCI
语种英语
WOS记录号WOS:000351835900004
源URL[http://ir.ia.ac.cn/handle/173211/10738]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_智能化团队
作者单位1.Beihang Univ, Sci & Technol Aircraft Control Lab, Beijing 100191, Peoples R China
2.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
3.City Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Luo, Biao,Wu, Huai-Ning,Li, Han-Xiong. Adaptive Optimal Control of Highly Dissipative Nonlinear Spatially Distributed Processes With Neuro-Dynamic Programming[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2015,26(4):684-696.
APA Luo, Biao,Wu, Huai-Ning,&Li, Han-Xiong.(2015).Adaptive Optimal Control of Highly Dissipative Nonlinear Spatially Distributed Processes With Neuro-Dynamic Programming.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,26(4),684-696.
MLA Luo, Biao,et al."Adaptive Optimal Control of Highly Dissipative Nonlinear Spatially Distributed Processes With Neuro-Dynamic Programming".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 26.4(2015):684-696.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。