|
作者 | Jiao Li; Si Zheng; Hongyu Kang; Zhen Hou; Qing Qian
|
刊名 | journal of data and information science
 |
出版日期 | 2016-06-17
|
卷号 | 1期号:2页码:32-44 |
关键词 | Scientific data
Full-text literature
Open access
PubMed Central
Data citation
|
通讯作者 | qing qian (e-mail: qian.qing@imicams.ac.cn).
|
中文摘要 |
purpose: in the open science era, it is typical to share project-generated scientific data by depositing it in an open and accessible database. moreover, scientific publications are preserved in a digital library archive. it is challenging to identify the data usage that is mentioned in literature and associate it with its source. here, we investigated the data usage of a government-funded cancer genomics project, the cancer genome atlas (tcga), via a full-text literature analysis. design/methodology/approach: we focused on identifying articles using the tcga dataset and constructing linkages between the articles and the specific tcga dataset. first, we collected 5,372 tcga-related articles from pubmed central (pmc). second, we constructed a benchmark set with 25 full-text articles that truly used the tcga data in their studies, and we summarized the key features of the benchmark set. third, the key features were applied to the remaining pmc full-text articles that were collected from pmc. findings: the amount of publications that use tcga data has increased significantly since 2011, although the tcga project was launched in 2005. additionally, we found that the critical areas of focus in the studies that use the tcga data were glioblastoma multiforme, lung cancer, and breast cancer; meanwhile, data from the rna-sequencing (rna-seq) platform is the most preferable for use. research limitations: the current workflow to identify articles that truly used tcga data is labor-intensive. an automatic method is expected to improve the performance. practical implications: this study will help cancer genomics researchers determine the latest advancements in cancer molecular therapy, and it will promote data sharing and data-intensive scientific discovery. originality/value: few studies have been conducted to investigate data usage by governmentfunded projects/programs since their launch. in this preliminary study, we extracted articles that use tcga data from pmc, and we created a link between the full-text articles and the source data. |
英文摘要 |
purpose: in the open science era, it is typical to share project-generated scientific data by depositing it in an open and accessible database. moreover, scientific publications are preserved in a digital library archive. it is challenging to identify the data usage that is mentioned in literature and associate it with its source. here, we investigated the data usage of a government-funded cancer genomics project, the cancer genome atlas (tcga), via a full-text literature analysis. design/methodology/approach: we focused on identifying articles using the tcga dataset and constructing linkages between the articles and the specific tcga dataset. first, we collected 5,372 tcga-related articles from pubmed central (pmc). second, we constructed a benchmark set with 25 full-text articles that truly used the tcga data in their studies, and we summarized the key features of the benchmark set. third, the key features were applied to the remaining pmc full-text articles that were collected from pmc. findings: the amount of publications that use tcga data has increased significantly since 2011, although the tcga project was launched in 2005. additionally, we found that the critical areas of focus in the studies that use the tcga data were glioblastoma multiforme, lung cancer, and breast cancer; meanwhile, data from the rna-sequencing (rna-seq) platform is the most preferable for use. research limitations: the current workflow to identify articles that truly used tcga data is labor-intensive. an automatic method is expected to improve the performance. practical implications: this study will help cancer genomics researchers determine the latest advancements in cancer molecular therapy, and it will promote data sharing and data-intensive scientific discovery. originality/value: few studies have been conducted to investigate data usage by governmentfunded projects/programs since their launch. in this preliminary study, we extracted articles that use tcga data from pmc, and we created a link between the full-text articles and the source data. |
学科主题 | 新闻学与传播学
; 图书馆、情报与文献学
|
收录类别 | 其他
|
原文出处 | http://www.chinalibraries.net
|
语种 | 英语
|
源URL | [http://ir.las.ac.cn/handle/12502/8596]  |
专题 | 文献情报中心_Journal of Data and Information Science_Journal of Data and Information Science-2016
|
作者单位 | Institute of Medical Information and Library, Chinese Academy of Medical Sciences, Beijing 100020, China
|
推荐引用方式 GB/T 7714 |
Jiao Li,Si Zheng,Hongyu Kang,et al. Identifying Scientific Project-generated Data Citation from Full-text Articles: An Investigation of TCGA Data Citation[J]. journal of data and information science,2016,1(2):32-44.
|
APA |
Jiao Li,Si Zheng,Hongyu Kang,Zhen Hou,&Qing Qian.(2016).Identifying Scientific Project-generated Data Citation from Full-text Articles: An Investigation of TCGA Data Citation.journal of data and information science,1(2),32-44.
|
MLA |
Jiao Li,et al."Identifying Scientific Project-generated Data Citation from Full-text Articles: An Investigation of TCGA Data Citation".journal of data and information science 1.2(2016):32-44.
|