中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Summertime aerosol chemical components in the marine boundary layer of the Arctic Ocean

文献类型:期刊论文

作者Xie, ZQ; Sun, LG; Blum, JD; Huang, YY; He, W; Huang YY(黄宇营); He W(何伟)
刊名JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
出版日期2006
卷号111期号:D10页码:D10309
通讯作者Univ Sci & Technol China, Sch Earth & Space Sci, Inst Polar Environm, Hefei 230026, Anhui, Peoples R China ; Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA ; Chinese Acad Sci, Inst High Energy Phys, Beijing 100039, Peoples R China
英文摘要Samples of aerosols from the marine boundary layer of the Arctic Ocean were collected aboard the R/V Xuelong during summer on the Second Chinese Arctic Research Expedition (July-September 2003). Synchrotron radiation X-ray fluorescence (SR-XRF) was used to determine chemical compositions of aerosol particles. Multivariate analysis of the SR-XRF data resolved a number of components (factors), which, on the basis of their chemical compositions and from their affiliation with specific meteorological flow patterns, were assigned physical meanings. Five factors explaining 94.7% of the total variance were identified. Ship emissions accounted for 35.3% of the variance (factor 1 (F1)) and are loaded significantly with S, Fe, V, and Ni. The total Fe emitted from ships globally was estimated at 8.60 x 10(6) kg yr(-1). Heavy-metal-rich factors included 34.0% of the variance (F2 and F3) and were interpreted to be pollution carried into the Arctic Ocean by long-range transport. Anthropogenic contributions from industrial regions to the Arctic Ocean during the summer vary and depend on the source locations. Air mass backward trajectories indicate that the metals including Hg, Pb, Cu, and Zn come mainly from northern Russia. The third source controlling the chemical compositions of aerosols was sea salt (F4, 12.8%). The role of sea salt decreased from the open sea to areas near pack ice. On the basis of the factor scores of aerosol samples, we infer that chlorine volatilization from sea salt may occur, enhanced by nitrogen and sulfur contamination emitted from ships. Because the global inventories of nitrogen and sulfur for ship exhausts are large, and halogens could have important consequences in possible tropospheric ozone destruction, the role of ships in influencing halogen depression in sea salt should be further investigated. Finally, we also identified a crustal factor (F5, 12.6%) and suggest that crustal elements (e.g., Ca) contaminating sea ice may become reinjected into the atmosphere as windblown aerosols.
学科主题Meteorology & Atmospheric Sciences
类目[WOS]Meteorology & Atmospheric Sciences
研究领域[WOS]Meteorology & Atmospheric Sciences
原文出处SCI
语种英语
WOS记录号WOS:000238070600003
源URL[http://ir.ihep.ac.cn/handle/311005/241079]  
专题高能物理研究所_多学科研究中心
作者单位中国科学院高能物理研究所
推荐引用方式
GB/T 7714
Xie, ZQ,Sun, LG,Blum, JD,et al. Summertime aerosol chemical components in the marine boundary layer of the Arctic Ocean[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2006,111(D10):D10309.
APA Xie, ZQ.,Sun, LG.,Blum, JD.,Huang, YY.,He, W.,...&何伟.(2006).Summertime aerosol chemical components in the marine boundary layer of the Arctic Ocean.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,111(D10),D10309.
MLA Xie, ZQ,et al."Summertime aerosol chemical components in the marine boundary layer of the Arctic Ocean".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 111.D10(2006):D10309.

入库方式: OAI收割

来源:高能物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。