中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
New conservation schemes for the nonlinear Schrodinger equation

文献类型:期刊论文

作者Sun JQ(孙建强); Ma ZQ(马中骐); Sun, JQ; Ma, ZQ; Hua, W; Qin, MZ
刊名APPLIED MATHEMATICS AND COMPUTATION
出版日期2006
卷号177期号:1页码:446-451
关键词Lie group methods nonlinear Schrodinger equation Cayley transform square-conservation scheme
通讯作者Inst High Energy Phys, Beijing 100049, Peoples R China ; Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China ; Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
英文摘要New explicit square-conservation schemes of any order for the nonlinear Schrodinger equation are presented. The basic idea is to discrete the space variable of the nonlinear Schrodinger equation approximately so that the resulting semi-discrete equation can be cast into an ordinary differential equation (dY)/(dt) = A(t, R)Y, A(t, Y) is a skew symmetry matrix. Then the Lie group methods, which can preserve the modulus square-conservation property of the ordinary differential equation, are applied to the ordinary differential equation. Numerical results show the effective of the Lie group method preserving the modulus square-conservation of the discrete nonlinear Schrodinger equation. (c) 2005 Elsevier Inc. All rights reserved.
学科主题Mathematics
类目[WOS]Mathematics, Applied
研究领域[WOS]Mathematics
原文出处SCI
语种英语
WOS记录号WOS:000238935900043
源URL[http://ir.ihep.ac.cn/handle/311005/237514]  
专题高能物理研究所_理论物理室
作者单位中国科学院高能物理研究所
推荐引用方式
GB/T 7714
Sun JQ,Ma ZQ,Sun, JQ,et al. New conservation schemes for the nonlinear Schrodinger equation[J]. APPLIED MATHEMATICS AND COMPUTATION,2006,177(1):446-451.
APA 孙建强,马中骐,Sun, JQ,Ma, ZQ,Hua, W,&Qin, MZ.(2006).New conservation schemes for the nonlinear Schrodinger equation.APPLIED MATHEMATICS AND COMPUTATION,177(1),446-451.
MLA 孙建强,et al."New conservation schemes for the nonlinear Schrodinger equation".APPLIED MATHEMATICS AND COMPUTATION 177.1(2006):446-451.

入库方式: OAI收割

来源:高能物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。