Monte Carlo study on the low momentum mu-pi identification of the BESIII EM calorimeter
文献类型:期刊论文
作者 | Wang ZG(王志刚)![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
刊名 | CHINESE PHYSICS C
![]() |
出版日期 | 2009 |
卷号 | 33期号:10页码:880-886 |
关键词 | BESIII calorimeter particle identification artificial neural network |
通讯作者 | [Wang Zhi-Gang ; Lue Jun-Guang ; He Kang-Lin ; An Zheng-Hua ; Cai Xiao ; Dong Ming-Yi ; Fang Jian ; Hu Tao ; Liu Wan-Jin ; Ning Fei-Peng ; Sun Li-Jun ; Sun Xi-Lei ; Wang Xiao-Dong ; Xue Zhen ; Yu Bo-Xiang ; Zhang Ai-Wu ; Zhou Li] CAS, Inst High Energy Phys, Beijing 100049, Peoples R China ; [Wang Zhi-Gang ; An Zheng-Hua ; Lue Qi-Wen ; Sun Xi-Lei ; Zhang Ai-Wu] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China ; [Lue Qi-Wen ; Ning Fei-Peng ; Wang Xiao-Dong] Shanxi Univ, Taiyuan 030006, Peoples R China ; [Xue Zhen] Univ Sci & Technol China, Hefei 230026, Peoples R China |
英文摘要 | The BESIII detector has a high-resolution electromagnetic calorimeter which can be used for low momentum mu-pi identification. Based on Monte Carlo simulations, mu-pi separation was studied. A multilayer perceptron neural network making use of the defined variables was used to do the identification and a good mu-pi separation result was obtained. |
学科主题 | Physics |
类目[WOS] | Physics, Nuclear ; Physics, Particles & Fields |
研究领域[WOS] | Physics |
原文出处 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000270401800011 |
源URL | [http://ir.ihep.ac.cn/handle/311005/238672] ![]() |
专题 | 高能物理研究所_实验物理中心 高能物理研究所_粒子天体物理中心 |
作者单位 | 中国科学院高能物理研究所 |
推荐引用方式 GB/T 7714 | Wang ZG,Lv JG,He KL,et al. Monte Carlo study on the low momentum mu-pi identification of the BESIII EM calorimeter[J]. CHINESE PHYSICS C,2009,33(10):880-886. |
APA | 王志刚.,吕军光.,何康林.,安正华.,蔡啸.,...&Zhou, L.(2009).Monte Carlo study on the low momentum mu-pi identification of the BESIII EM calorimeter.CHINESE PHYSICS C,33(10),880-886. |
MLA | 王志刚,et al."Monte Carlo study on the low momentum mu-pi identification of the BESIII EM calorimeter".CHINESE PHYSICS C 33.10(2009):880-886. |
入库方式: OAI收割
来源:高能物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。