中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
热门
An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease

文献类型:期刊论文

作者Chen, Hui-Ling1; Wang, Gang2; Ma, Chao3; Cai, Zhen-Nao1,4; Liu, Wen-Bin1; Wang, Su-Jing5,6
刊名NEUROCOMPUTING
出版日期2016-04-05
卷号184期号:0页码:131-144
关键词Kernel extreme learning machine Feature selection Medical diagnosis Parkinson's disease
ISSN号0925-2312
英文摘要In this paper, we explore the potential of extreme learning machine (ELM) and kernel ELM (KELM) for early diagnosis of Parkinson's disease (PD). In the proposed method, the key parameters including the number of hidden neuron and type of activation function in ELM, and the constant parameter C and kernel parameter gamma in KELM are investigated in detail. With the obtained optimal parameters, ELM and KELM manage to train the optimal predictive models for PD diagnosis. In order to further improve the performance of ELM and KELM models, feature selection techniques are implemented prior to the construction of the classification models. The effectiveness of the proposed method has been rigorously evaluated against the PD data set in terms of classification accuracy, sensitivity, specificity and the area under the ROC (receiver operating characteristic) curve (AUC). Compared to the existing methods in previous studies, the proposed method has achieved very promising classification accuracy via 10-fold cross-validation (CV) analysis, with the highest accuracy of 96.47% and average accuracy of 95.97% over 10 runs of 10-fold CV. (C) 2015 Elsevier B.V. All rights reserved.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence
研究领域[WOS]Computer Science
关键词[WOS]FEEDFORWARD NETWORKS ; CLASSIFICATION ; SPEECH ; PERFORMANCE ; ALGORITHMS ; RELEVANCE ; ACCURACY ; ENSEMBLE ; NUMBER
收录类别SCI
语种英语
WOS记录号WOS:000374364300014
源URL[http://ir.psych.ac.cn/handle/311026/19987]  
专题心理研究所_脑与认知科学国家重点实验室
作者单位1.Wenzhou Univ, Coll Phys & Elect Informat, Wenzhou 325035, Zhejiang, Peoples R China
2.Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
3.Shenzhen Inst Informat Technol, Sch Digital Media, Shenzhen 518172, Peoples R China
4.Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian 710072, Peoples R China
5.Chinese Acad Sci, Inst Psychol, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China
6.Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
推荐引用方式
GB/T 7714
Chen, Hui-Ling,Wang, Gang,Ma, Chao,et al. An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease[J]. NEUROCOMPUTING,2016,184(0):131-144.
APA Chen, Hui-Ling,Wang, Gang,Ma, Chao,Cai, Zhen-Nao,Liu, Wen-Bin,&Wang, Su-Jing.(2016).An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease.NEUROCOMPUTING,184(0),131-144.
MLA Chen, Hui-Ling,et al."An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease".NEUROCOMPUTING 184.0(2016):131-144.

入库方式: OAI收割

来源:心理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。