中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Efficient and Robust Learning for Sustainable and Reacquisition-Enabled Hand Tracking

文献类型:期刊论文

作者Aziz, Muhammad Ali Abdul1; Niu, Jianwei1; Zhao, Xiaoke1; Li, Xuelong2
刊名ieee transactions on cybernetics
出版日期2016-04-01
卷号46期号:4页码:945-958
关键词Computer vision histograms of oriented gradient (HOG) local binary pattern (LBP) machine learning mean shift implanted particle filter
ISSN号2168-2267
产权排序2
英文摘要the use of machine learning approaches for long-term hand tracking poses some major challenges such as attaining robustness to inconsistencies in lighting, scale and object appearances, background clutter, and total object occlusion/disappearance. to address these issues in this paper, we present a robust machine learning approach based on enhanced particle filter trackers. the inherent drawbacks associated with the particle filter approach, i.e., sample degeneration and sample impoverishment, are minimized by infusing the particle filter with the mean shift approach. moreover, to instill our tracker with reacquisition ability, we propose a rotation invariant and efficient detection framework named beta histograms of oriented gradients. our robust appearance model operates on the red, green, blue color histogram and our newly proposed rotation invariant noise compensated local binary patterns descriptor, which is a noise compensated, rotation invariant version of the local binary patterns descriptor. through our experiments, we demonstrate that our proposed hand tracker performs favorably against state-of-the-art algorithms on numerous challenging video sequences of hand postures, and overcomes the largely unsolved problem of redetecting hands after they vanish and reappear into the frame.
WOS标题词science & technology ; technology
类目[WOS]computer science, artificial intelligence ; computer science, cybernetics
研究领域[WOS]computer science
关键词[WOS]object tracking ; mean shift ; visual tracking ; sparse representation ; particle filter ; model ; classification ; segmentation
收录类别SCI ; EI
语种英语
WOS记录号WOS:000372791200007
源URL[http://ir.opt.ac.cn/handle/181661/28078]  
专题西安光学精密机械研究所_光学影像学习与分析中心
作者单位1.Beihang Univ, Sch Comp Sci & Engn, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr Opt Imagery Anal & Learning, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Aziz, Muhammad Ali Abdul,Niu, Jianwei,Zhao, Xiaoke,et al. Efficient and Robust Learning for Sustainable and Reacquisition-Enabled Hand Tracking[J]. ieee transactions on cybernetics,2016,46(4):945-958.
APA Aziz, Muhammad Ali Abdul,Niu, Jianwei,Zhao, Xiaoke,&Li, Xuelong.(2016).Efficient and Robust Learning for Sustainable and Reacquisition-Enabled Hand Tracking.ieee transactions on cybernetics,46(4),945-958.
MLA Aziz, Muhammad Ali Abdul,et al."Efficient and Robust Learning for Sustainable and Reacquisition-Enabled Hand Tracking".ieee transactions on cybernetics 46.4(2016):945-958.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。