中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Projective robust nonnegative factorization

文献类型:期刊论文

作者Lu, Yuwu1; Lai, Zhihui2; Xu, Yong3; You, Jane4; Li, Xuelong5; Yuan, Chun1
刊名information sciences
出版日期2016-10-10
卷号364页码:16-32
关键词Robust Nonnegative matrix factorization Graph regularization Face recognition
ISSN号0020-0255
产权排序5
英文摘要nonnegative matrix factorization (nmf) has been successfully used in many fields as a low-dimensional representation method. projective nonnegative matrix factorization (pnmf) is a variant of nmf that was proposed to learn a subspace for feature extraction. however, both original nmf and pnmf are sensitive to noise and are unsuitable for feature extraction if data is grossly corrupted. in order to improve the robustness of nmf, a framework named projective robust nonnegative factorization (prnf) is proposed in this paper for robust image feature extraction and classification. since learned projections can weaken noise disturbances, prnf is more suitable for classification and feature extraction. in order to preserve the geometrical structure of original data, prnf introduces a graph regularization term which encodes geometrical structure. in the prnf framework, three algorithms are proposed that add a sparsity constraint on the noise matrix based on l-1/2 norm, l-1 norm, and l-2,l-1 norm, respectively. robustness and classification performance of the three proposed algorithms are verified with experiments on four face image databases and results are compared with state-of-the-art robust nmf-based algorithms. experimental results demonstrate the robustness and effectiveness of the algorithms for image classification and feature extraction. (c) 2016 elsevier inc. all rights reserved.
WOS标题词science & technology ; technology
类目[WOS]computer science, information systems
研究领域[WOS]computer science
关键词[WOS]matrix factorization ; image representation ; algorithm ; parts
收录类别SCI ; EI
语种英语
WOS记录号WOS:000378969400002
源URL[http://ir.opt.ac.cn/handle/181661/28168]  
专题西安光学精密机械研究所_光学影像学习与分析中心
作者单位1.Tsinghua Univ, Tsinghua CUHK Joint Res Ctr Media Sci Technol & S, Grad Sch Shenzhen, Beijing, Peoples R China
2.Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
3.Harbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Harbin, Peoples R China
4.Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China
5.Chinese Acad Sci, State Key Lab Transient Opt & Photon, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Lu, Yuwu,Lai, Zhihui,Xu, Yong,et al. Projective robust nonnegative factorization[J]. information sciences,2016,364:16-32.
APA Lu, Yuwu,Lai, Zhihui,Xu, Yong,You, Jane,Li, Xuelong,&Yuan, Chun.(2016).Projective robust nonnegative factorization.information sciences,364,16-32.
MLA Lu, Yuwu,et al."Projective robust nonnegative factorization".information sciences 364(2016):16-32.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。