中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
热门
DSets-DBSCAN: A Parameter-Free Clustering Algorithm

文献类型:期刊论文

作者Hou, Jian1,2; Gao, Huijun3; Li, Xuelong4
刊名ieee transactions on image processing
出版日期2016-07-01
卷号25期号:7页码:3182-3193
关键词Clustering similarity matrix histogram equalization dominant sets parameter-free
ISSN号1057-7149
产权排序4
通讯作者gao, huijun (hjgao@hit.edu.cn)
英文摘要

clustering image pixels is an important image segmentation technique. while a large amount of clustering algorithms have been published and some of them generate impressive clustering results, their performance often depends heavily on user-specified parameters. this may be a problem in the practical tasks of data clustering and image segmentation. in order to remove the dependence of clustering results on user-specified parameters, we investigate the characteristics of existing clustering algorithms and present a parameter-free algorithm based on the dsets (dominant sets) and dbscan (density-based spatial clustering of applications with noise) algorithms. first, we apply histogram equalization to the pairwise similarity matrix of input data and make dsets clustering results independent of user-specified parameters. then, we extend the clusters from dsets with dbscan, where the input parameters are determined based on the clusters from dsets automatically. by merging the merits of dsets and dbscan, our algorithm is able to generate the clusters of arbitrary shapes without any parameter input. in both the data clustering and image segmentation experiments, our parameter-free algorithm performs better than or comparably with other algorithms with careful parameter tuning.

WOS标题词science & technology ; technology
类目[WOS]computer science, artificial intelligence ; engineering, electrical & electronic
研究领域[WOS]computer science ; engineering
关键词[WOS]image segmentation ; dominant sets ; number
收录类别SCI ; EI
语种英语
WOS记录号WOS:000384521200001
源URL[http://ir.opt.ac.cn/handle/181661/28249]  
专题西安光学精密机械研究所_光学影像学习与分析中心
作者单位1.Bohai Univ, Coll Engn, Jinzhou 121013, Peoples R China
2.Univ Ca Foscari Venezia, European Ctr Living Technol, I-30124 Venice, Italy
3.Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R China
4.Chinese Acad Sci, Ctr Opt IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Hou, Jian,Gao, Huijun,Li, Xuelong. DSets-DBSCAN: A Parameter-Free Clustering Algorithm[J]. ieee transactions on image processing,2016,25(7):3182-3193.
APA Hou, Jian,Gao, Huijun,&Li, Xuelong.(2016).DSets-DBSCAN: A Parameter-Free Clustering Algorithm.ieee transactions on image processing,25(7),3182-3193.
MLA Hou, Jian,et al."DSets-DBSCAN: A Parameter-Free Clustering Algorithm".ieee transactions on image processing 25.7(2016):3182-3193.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。