DSets-DBSCAN: A Parameter-Free Clustering Algorithm
文献类型:期刊论文
作者 | Hou, Jian1,2; Gao, Huijun3; Li, Xuelong4![]() |
刊名 | ieee transactions on image processing
![]() |
出版日期 | 2016-07-01 |
卷号 | 25期号:7页码:3182-3193 |
关键词 | Clustering similarity matrix histogram equalization dominant sets parameter-free |
ISSN号 | 1057-7149 |
产权排序 | 4 |
通讯作者 | gao, huijun (hjgao@hit.edu.cn) |
英文摘要 | clustering image pixels is an important image segmentation technique. while a large amount of clustering algorithms have been published and some of them generate impressive clustering results, their performance often depends heavily on user-specified parameters. this may be a problem in the practical tasks of data clustering and image segmentation. in order to remove the dependence of clustering results on user-specified parameters, we investigate the characteristics of existing clustering algorithms and present a parameter-free algorithm based on the dsets (dominant sets) and dbscan (density-based spatial clustering of applications with noise) algorithms. first, we apply histogram equalization to the pairwise similarity matrix of input data and make dsets clustering results independent of user-specified parameters. then, we extend the clusters from dsets with dbscan, where the input parameters are determined based on the clusters from dsets automatically. by merging the merits of dsets and dbscan, our algorithm is able to generate the clusters of arbitrary shapes without any parameter input. in both the data clustering and image segmentation experiments, our parameter-free algorithm performs better than or comparably with other algorithms with careful parameter tuning. |
WOS标题词 | science & technology ; technology |
类目[WOS] | computer science, artificial intelligence ; engineering, electrical & electronic |
研究领域[WOS] | computer science ; engineering |
关键词[WOS] | image segmentation ; dominant sets ; number |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000384521200001 |
源URL | [http://ir.opt.ac.cn/handle/181661/28249] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
作者单位 | 1.Bohai Univ, Coll Engn, Jinzhou 121013, Peoples R China 2.Univ Ca Foscari Venezia, European Ctr Living Technol, I-30124 Venice, Italy 3.Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R China 4.Chinese Acad Sci, Ctr Opt IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China |
推荐引用方式 GB/T 7714 | Hou, Jian,Gao, Huijun,Li, Xuelong. DSets-DBSCAN: A Parameter-Free Clustering Algorithm[J]. ieee transactions on image processing,2016,25(7):3182-3193. |
APA | Hou, Jian,Gao, Huijun,&Li, Xuelong.(2016).DSets-DBSCAN: A Parameter-Free Clustering Algorithm.ieee transactions on image processing,25(7),3182-3193. |
MLA | Hou, Jian,et al."DSets-DBSCAN: A Parameter-Free Clustering Algorithm".ieee transactions on image processing 25.7(2016):3182-3193. |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。