中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Physiological function and inflamed-brain migration of mouse monocyte-derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles-Implication of macrophage-based drug delivery into-the central nervous system

文献类型:期刊论文

作者Tong, Hsin-I1,2; Kang, Wen1,3; Shi, Yingli1,4; Zhou, Guangzhou1,5; Lu, Yuanan1
刊名INTERNATIONAL JOURNAL OF PHARMACEUTICS
出版日期2016-05-30
卷号505期号:1-2页码:271-282
关键词Nanoparticle surface coating Nanoparticle size Monocyte-macrophage drug delivery Monocyte-macrophage brain migration SPIONs Neuroinflammation
英文摘要This study was designed to use superparamagnetic iron oxide nanoparticles (SPIONs) as evaluating tools to study monocyte-derived macrophages (MDM)-mediated delivery of small molecular agents into the diseased brains. MDM were tested with different-configured SPIONs at selected concentrations for their impacts on carrier cells' physiological and migratory properties, which were found to depend largely on particle size, coating, and treatment concentrations. SHP30, a SPION of 30-nm core size with oleic acids plus amphiphilic polymer coating, was identified to have high cellular uptake efficiency and cause little cytotoxic effects on MDM. At lower incubation dose (25 mu g/mL), few alteration was observed in carrier cells' physiological and in vivo migratory functions, as tested in a lipopolysaccharide-induced acute neuroinflammation mouse model. Nevertheless, significant increase in monocyte-to-macrophage differentiation, and decrease in in vivo carrier MDM inflamed-brain homing ability were found in groups treated with a higher dose of SHP30 at 100 mu g/mL. Overall, our results have identified MDM treatment at 25 mu g/mL SHP30 resulted in little functional changes, provided valuable parameters for using SPIONs as evaluating tools to study MDM-mediated therapeutics carriage and delivery, and supported the concepts of using monocytes-macrophages as cellular vehicles to transport small molecular agents to the brain. (C) 2016 Elsevier B.V. All rights reserved.
收录类别SCI
语种英语
WOS记录号WOS:000376695900031
源URL[http://ir.qdio.ac.cn/handle/337002/126225]  
专题海洋研究所_实验海洋生物学重点实验室
作者单位1.Univ Hawaii Manoa, Off Publ Hlth Studies, Honolulu, HI 96822 USA
2.Univ Hawaii Manoa, Dept Microbiol, Honolulu, HI 96822 USA
3.Fourth Mil Med Univ, Tangdu Hosp, Dept Infect Dis, Xian 710032, Shaanxi, Peoples R China
4.Chinese Acad Sci, Inst Oceanol, Qingdao, Shandong, Peoples R China
5.Henan Univ Technol, Coll Bioengn, Zhengzhou 450000, Henan, Peoples R China
推荐引用方式
GB/T 7714
Tong, Hsin-I,Kang, Wen,Shi, Yingli,et al. Physiological function and inflamed-brain migration of mouse monocyte-derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles-Implication of macrophage-based drug delivery into-the central nervous system[J]. INTERNATIONAL JOURNAL OF PHARMACEUTICS,2016,505(1-2):271-282.
APA Tong, Hsin-I,Kang, Wen,Shi, Yingli,Zhou, Guangzhou,&Lu, Yuanan.(2016).Physiological function and inflamed-brain migration of mouse monocyte-derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles-Implication of macrophage-based drug delivery into-the central nervous system.INTERNATIONAL JOURNAL OF PHARMACEUTICS,505(1-2),271-282.
MLA Tong, Hsin-I,et al."Physiological function and inflamed-brain migration of mouse monocyte-derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles-Implication of macrophage-based drug delivery into-the central nervous system".INTERNATIONAL JOURNAL OF PHARMACEUTICS 505.1-2(2016):271-282.

入库方式: OAI收割

来源:海洋研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。