Two-dimensional Bose-Einstein condensate under pressure
文献类型:期刊论文
作者 | Cho, W; Kim, SW; Park, JH |
刊名 | NEW JOURNAL OF PHYSICS
![]() |
出版日期 | 2015 |
卷号 | 17期号:0页码:13038 |
关键词 | ideal Bose gas emergence first-order phase transition two dimensions |
通讯作者 | Cho, W (reprint author), Sogang Univ, Dept Phys, Seoul 121742, South Korea. |
英文摘要 | Evading the Mermin-Wagner-Hohenberg no-go theorem and revisiting with rigor the ideal Bose gas confined in a square box, we explore a discrete phase transition in two spatial dimensions. Through both analytic and numerical methods, we verify that thermodynamic instability emerges if the number of particles is sufficiently yet finitely large: specifically, N >= 35131. The instability implies that the isobar of the gas zigzags on the temperature-volume plane, featuring supercooling and superheating phenomena. The Bose-Einstein condensation can then persist from absolute zero to the superheating temperature. Without necessarily taking the large N limit, under a constant pressure condition, the condensation takes place discretely both in the momentum and in the position spaces. Our result is applicable to a harmonic trap. We assert that experimentally observed Bose-Einstein condensations of harmonically trapped atomic gases are a first-order phase transition that involves a discrete change of the density at the center of the trap. |
学科主题 | Physics |
类目[WOS] | Physics, Multidisciplinary |
关键词[WOS] | LONG-RANGE ORDER ; SYMMETRY ; SYSTEMS ; TRAPS |
收录类别 | SCI |
语种 | 英语 |
源URL | [http://ir.itp.ac.cn/handle/311006/21112] ![]() |
专题 | 理论物理研究所_理论物理所1978-2010年知识产出 |
推荐引用方式 GB/T 7714 | Cho, W,Kim, SW,Park, JH. Two-dimensional Bose-Einstein condensate under pressure[J]. NEW JOURNAL OF PHYSICS,2015,17(0):13038. |
APA | Cho, W,Kim, SW,&Park, JH.(2015).Two-dimensional Bose-Einstein condensate under pressure.NEW JOURNAL OF PHYSICS,17(0),13038. |
MLA | Cho, W,et al."Two-dimensional Bose-Einstein condensate under pressure".NEW JOURNAL OF PHYSICS 17.0(2015):13038. |
入库方式: OAI收割
来源:理论物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。