中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A SVM-kNN method for quasar-star classification

文献类型:期刊论文

作者Peng NanBo1,2; Zhang YanXia1; Zhao YongHeng1
刊名SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY
出版日期2013-06-01
卷号56期号:6页码:1227-1234
关键词classification stars/quasars algorithm: SVM kNN data analysis
英文摘要We integrate k-Nearest Neighbors (kNN) into Support Vector Machine (SVM) and create a new method called SVM-kNN. SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM and improve the forecast accuracy. In addition, it can give the prediction probability of any quasar candidate through counting the nearest neighbors of that candidate which is produced by kNN. Applying photometric data of stars and quasars with spectral classification from SDSS DR7 and considering limiting magnitude error is less than 0.1, SVM-kNN and SVM reach much higher performance that all the classification metrics of quasar selection are above 97.0%. Apparently, the performance of SVM-kNN has slighter improvement than that of SVM. Therefore SVM-kNN is such a competitive and promising approach that can be used to construct the targeting catalogue of quasar candidates for large sky surveys.
收录类别SCI
语种英语
WOS记录号WOS:000319072700023
源URL[http://ir.bao.ac.cn/handle/114a11/6000]  
专题国家天文台_光学天文研究部
作者单位1.Chinese Acad Sci, Key Lab Opt Astron, Natl Astron Observ, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Peng NanBo,Zhang YanXia,Zhao YongHeng. A SVM-kNN method for quasar-star classification[J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY,2013,56(6):1227-1234.
APA Peng NanBo,Zhang YanXia,&Zhao YongHeng.(2013).A SVM-kNN method for quasar-star classification.SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY,56(6),1227-1234.
MLA Peng NanBo,et al."A SVM-kNN method for quasar-star classification".SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY 56.6(2013):1227-1234.

入库方式: OAI收割

来源:国家天文台

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。