中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Application of Kernel Based Machine Learning to the Inversion Problem of Photospheric Magnetic Fields

文献类型:期刊论文

作者Teng, Fei
刊名SOLAR PHYSICS
出版日期2015-10-01
卷号290期号:10页码:2693-2708
关键词Statistical machine learning Support vector machine regression Inversion of photospheric magnetic field Solar spectropolarimeter
英文摘要For the purpose of fast methods for handling huge amounts of data coming from future solar spectropolarimeters, the statistical machine-learning techniques based on Mercer's kernel were applied to the inversion of the photospheric magnetic fields from polarimetric data. In particular, the Regularized Neural Network and the Support Vector Machine were tested for the data from the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory.
收录类别SCI
语种英语
WOS记录号WOS:000365220000004
源URL[http://ir.bao.ac.cn/handle/114a11/5528]  
专题国家天文台_太阳物理研究部
作者单位Chinese Acad Sci, Natl Astron Observ, Key Lab Solar Act, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Teng, Fei. Application of Kernel Based Machine Learning to the Inversion Problem of Photospheric Magnetic Fields[J]. SOLAR PHYSICS,2015,290(10):2693-2708.
APA Teng, Fei.(2015).Application of Kernel Based Machine Learning to the Inversion Problem of Photospheric Magnetic Fields.SOLAR PHYSICS,290(10),2693-2708.
MLA Teng, Fei."Application of Kernel Based Machine Learning to the Inversion Problem of Photospheric Magnetic Fields".SOLAR PHYSICS 290.10(2015):2693-2708.

入库方式: OAI收割

来源:国家天文台

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。