中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Interactive visual cluster detection in large geospatial datasets based on dynamic density volume visualization

文献类型:SCI/SSCI论文

作者Du F.; Zhu, A. X.; Qi, F.; Li, J.; Li, J.
发表日期2016
关键词trajectory spatial cluster social media geovisual analytics big data geovisual analytics decision-support scan statistics patterns crime space time challenges twitter
英文摘要The emerging spatial big data (e.g. detailed spatial trajectories, geo-referenced social media data) provide tremendous opportunities for GIScientists and geographers. However, their large volume also poses challenges to existing spatial data analytical techniques (including visual analytical techniques). This article presents an interactive visual approach to detect clusters from those emerging data sets based on dynamic density volume visualization in a three-dimensional space (two spatial dimensions plus a third temporal or thematic dimension of interest). Cluster can be visually discovered through dynamic adjustment of density to colour/opacity mapping and extracted through flexible selection tools. The approach was tested on a large simulated data-set and a spatial trajectory data-set. The results show that the approach can overcome the visual clotting problem in traditional visualization tools caused by large data volume and facilitate the involvement of domain knowledge in analysis. It can effectively support visual cluster detection in the emerging large geospatial data sets.
出处Geocarto International
31
6
597-611
收录类别SCI
语种英语
ISSN号1010-6049
源URL[http://ir.igsnrr.ac.cn/handle/311030/43226]  
专题地理科学与资源研究所_历年回溯文献
推荐引用方式
GB/T 7714
Du F.,Zhu, A. X.,Qi, F.,et al. Interactive visual cluster detection in large geospatial datasets based on dynamic density volume visualization. 2016.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。