中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
高精度光学式轮廓测量技术的研究

文献类型:学位论文

作者江晓军
学位类别博士
答辩日期2009
授予单位中国科学院上海光学精密机械研究所
导师黄惠杰
关键词计量技术 光学测量与检测 位移测量 误差修正 干涉条纹分析
其他题名Study on high-precision optical measurement techniques for element profile
中文摘要高精度光学式轮廓测量技术是一种精密、非接触元件的轮廓测量技术。随着微电子、精密光学与机械加工等现代工业技术领域对元件轮廓的加工精度日益提高,高精度光学式轮廓测量技术在工业生产和科学研究中的应用越来越广泛。本论文研究的高精度光学式轮廓测量技术主要分为两个部分:一是研究利用低线对数计量光栅实现高分辨率与高精度的位移测量技术,包括测量误差的修正方法;二是研究在高噪声的车间环境条件下,光学元件面形偏差的高精度测量技术。本论文在对现有光学轮廓测量技术进行讨论和分析的基础上,对元件的长度、角度和面形的精密测量方法作了研究,主要内容有以下几个方面: 1)提出了一种基于光栅位移传感器的位移测量技术。通过对光栅传感器的输出信号进行细分、辨向和计数得到位移测量值,再对该测量值进行修正以进一步提高光栅位移测量系统短期运行的测量精度。 2)提出了一种光栅位移测量系统的误差修正方法。通过对光栅传感器的多个零位信号进行计数及根据误差函数对位移测量值进行修正,提高了光栅位移测量系统长期运行的测量精度。 3)提出了用于辨识干涉条纹顺序的角状扫描和区域搜索技术。通过角状扫描对干涉条纹的位置进行搜索,得到条纹的位置,再用区域搜索技术对这些条纹的顺序进行数字标识。 4)提出了用于测量光学元件面形偏差的栅格线算法。通过栅格线找到平均条纹间距和条纹最大弯曲量,再通过规格化获得光学元件的光圈数。提高了对光学元件面形偏差的测量精度。 5)提出了一种获取平面光学元件光圈数的最佳估计值的方法。通过确定测试区域及相应的搜索区域,得到条纹弯曲量的平均值和相应条纹间距的平均值,再根据测试区域对应的权重系数,得到了被测平面光学元件光圈数的最佳估计值。 在精密位移测量技术及其测量误差修正方法的研究中,研制出一套基于光栅传感器的精密位移测量系统。该测量系统在测量范围为-100 ~ 100 mm内,对X和Y坐标方向的测量分辨率为1μm,测量误差为±6.0μm ;在0º~360º的测量范围内,其测量分辨率为1'',测量误差为±4.9''。 在光学元件面形的干涉测量技术研究中,研制出一套获取平面光学元件光圈数的软件。该软件可以精确地获得被测光学元件表面的光圈数和局部误差值。实际测量结果证明,该软件可以在高噪声的车间环境条件下替代目视判读干涉条纹。 此外,本论文还对移相干涉仪的位相误差进行了数值模拟,并对位相误差修正技术进行了探讨。
英文摘要High-precision optical measurement technique for element profile is a precise and non-touch measurement technique. In improving the manufacture precision of element profile in microelectronics, precision optics, mechanical manufacture and other modern industrial fields, the technique is used widely in industrial production and science research. In this dissertation, the research work on the technique is divided into two parts. One is the technique of realizing the precise & high-resolution displacement measurement with the lower-resolution metrology gratings, including the measuring error compensation. The other is the technique of measuring the surface form deviation of the optical elements under the condition of high-noise workshop environment. On the basis of discussion and analysis of the existent high-precision optical measurement techniques for element profile, the precision measurement techniques of length, angle and surface form deviation of the mechanical and optical elements are investigated. The main results are listed as follows: 1)A displacement measurement technique based on grating displacement sensors is proposed. After the output signals from the grating sensors are subdivided, identified and counted, the value of the displacement is obtained and compensated to improve the precision of the displacement measurement system of short-term running. 2)A method on the automatic error compensation of grating displacement measurement system is proposed. The number of zero position signals is counted and the measured value of the displacement is compensated with the error function. This method can be utilized to compensate the errors automatically and improve the measuring precision of the displacement measurement system of long-term running. 3)The angular scan and zone search technique for identifying the order of fringe pattern traces is proposed. It uses the angular scan for searching the trace positions, and the zone search technique for identifying the order of fringe pattern traces with the digital label. 4)The grid line algroithm for measuring the surface form deviation of the optical element is proposed. It uses the grid lines for locating the interference fringes to search the average fringe spacing and the maximum curvature, and utilizes the normalization to obtain the value of surface form deviation of the optical element. The algroithm improves the measuring precision of the surface form deviation of the optical element and the adaptation capability of processing the interference fringes. 5)A method for obtaining the optimum estimation value of N of the plane optical element is proposed. Tested zones in the interferogram are determined to search the average curvature of the interference fringes and the average fringe spacing, and the weight coefficients of the tested zones are used to obtain the optimum estimation value of N of the optical element. During research of the precision displacement measurement technique and the measuring error compensation, a precision displacement measurement system based on grating sensors is developed. In the coordinate range from -100 to 100 mm, a resolution of 1μm and a measuring error of ±6.0μm are obtained. In the angular range from 0º to 360º, a resolution of 1'' and a measuring error of ±4.9'' are obtained. During research of the interferometry measurement technique for measuring the surface form deviation, a set of computer software is developed to precisely obtain the value of N and local error of optical element surfaces. The experimental result shows that the software can be utilized to substitute the visual interpretation of interference fringes under the condition of high-noise workshop environment. Additionally, the phase error of the phase-shifting interferometer is analyzed by the numerical simulation and the technique of the phase error compensation is discussed.
语种中文
源URL[http://ir.siom.ac.cn/handle/181231/15252]  
专题上海光学精密机械研究所_学位论文
推荐引用方式
GB/T 7714
江晓军. 高精度光学式轮廓测量技术的研究[D]. 中国科学院上海光学精密机械研究所. 2009.

入库方式: OAI收割

来源:上海光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。