中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
压印技术和光学超分辨的应用研究

文献类型:学位论文

作者王伟
学位类别博士
答辩日期2009
授予单位中国科学院上海光学精密机械研究所
导师周常河
关键词微结构光栅 微透镜阵列 压印技术 复制技术 超分辨技术
其他题名Research on applications of imprint and optical superresolution technology
中文摘要微光学是光学、微电子学和微机械学相互渗透、相互交叉而形成的一门新型学科。微光学元件是借助于微米和纳米等现代加工技术加工而成,微小化、阵列化和集成化的光学元件和系统的开发应用引起了人们对微光学元件的关注。与微光学领域相关的设计、制作与应用的研究受到了越来越多的重视。光学超分辨技术是通过改变光学系统的结构而获取超过衍射极限光斑的方法。随着信息技术的发展,需要提供更高的光存储密度,现有提高光存储密度的方法是增大物镜的数值孔径和减小激光器的波长,现在蓝光光存储中物镜的数值孔径已经达到0.8,进一步增大物镜数值孔径和减小激光器波长会遇到技术和成本无法克服的问题。光学超分辨技术为减小聚焦光斑提高存储容量提供了一条新的途径。本论文旨在研究压印技术在微光学器件复制中的应用和光学超分辨技术在光存储中的应用。主要内容如下: 1.压印技术在微结构光栅复制的应用。微结构光栅将衍射理论和大规模集成电路制造工艺结合起来,实现新的功能,开辟了光栅设计、制造和应用新方向。Whitesides、Chou、Colburn等提出并发展了压印技术用于制造微米到纳米量级的微结构的方法。该技术的最大优点是工艺简单、成本低、适合大批量的制造,而且分辨率高。我们研究利用这种方法进行微结构光栅复制的技术,我们详细介绍了利用微电子加工工艺制备微结构光栅母板的方法,制备了各种类型的矩形截面微结构光栅、达曼光栅、全息光栅和高密度深刻蚀光栅。详细地研究了各种微结构光栅的模具制备方法和紫外压印复制方法,分析了各个工艺环节对复制工艺的影响,并且给出了各种微结构光栅的复制结果并做了详细的分析。这种复制方法为微结构光栅的低成本、大规模制造奠定了基础。 2.压印技术在微透镜阵列制造中的应用。微透镜阵列是一种目前使用十分广泛的微光学元件,它是一系列孔径在几个微米至几百个微米的微小型透镜按一定排列组成的阵列,广泛的应用于光束整形,光学器件互连,光信息处理、三维成像等领域。我们研究了压印技术在微透镜阵列制造中的应用,该方法利用传统的光刻胶热熔方法制造微透镜阵列母板,利用PDMS作为微透镜模具,采用压印方法将微透镜阵列图形转移到玻璃基板上的紫外胶上。实验证明该方法制成的折射型微透镜阵列性能稳定、可靠,是实现微透镜阵列大规模生产的一条重要途径。最后还对光刻胶热熔法制备微柱面透镜进行了初步实验研究。 3.光学超分辨光存储技术的研究。光盘的存储密度和光学头中聚焦光斑的大小成正比关系,光存储中聚焦光斑的尺寸决定于系统所用激光波长和物镜数值孔径。然而,以目前的技术手段不可能无限制地提高光盘中物镜的数值孔径和缩短激光波长。本文以超分辨位相板在光存储中的应用为背景,主要进行超分辨光学头的设计研究,对采用位相型光瞳滤波器的超分辨光存储技术进行了实验验证和ZEMAX模拟;我们分别设计制作了压缩比为0.982、0.958、0.929和0.898的超分辨位相板并将其装配到现有的DVD光学读取头中。在装配的20个光学头中,经过测试发现光学头装入超分辨位相板后可以起到压缩光斑中心主瓣的效果,对增强读盘能力能起到一定的作用。对光学头物镜前加入超分辨位相板进行ZEMAX模拟后发现,加入位相板后会实现中心主瓣的压缩,同时经过模拟发现,位相板的装配精度要求较高,位相板偏心和倾斜都会使光学头物镜的聚焦性能变差。超分辨位相板在光存储中进入实用化还需提高装配精度并探索减小像差的方法。
英文摘要Micro-optics is a new joint research area that synthesized optics, microelectronics, and micromechanics. Micro-elements are fabricated by modern micro and nano fabrication process. In recent years, micro-optics elements have received attention for application in small sized, arrayed, and integrated micro-optics element and system. Design, fabrication and application of micro-optics elements are highly interesting nowadays. Optics superresolution technology is one way that can break diffraction limit by using the diffractive structure of optical system. With the development of information technology, higher storage density is needed. Increasing numerical aperture and decreasing the light wavelength are the methods to increase the storage density. In blue disc, numerical aperture of the lens has increased to be 0.8. Increasing numerical aperture and decreasing light wavelength will be ultimately limited due to the technical difficulty. Optical superresolution technology provides another approach to decrease the size of focal point and to increase storage density. This dissertation concentrates on the applications of imprint in replication of micro-optics elements and optical superresolution technology in high density optical storage. 1. Application of imprint in replication of micro-optics elements. Microstructure grating combines diffraction theory with VLSI processing technology, which demonstrates a new direction for the design, fabrication and application of grating. Imprint technology, which is put forward and developed by Whitesides, Chou, and Colburn, is one way to fabricate micro/nano structure. The advantage of this technology is simple process, low cost, high throughput, and high resolution. The replication of microstructure gratings is researched using imprint technology. The method is used to fabricate all kinds of master microstructure grating, including microstructure gratings with rectangular surface relief, Dammann gratings, holography gratings, and high density and deep etching gratings. The method is studied to make the mold of microstructure gratings and UV imprint replication technology. The attentions of every step of replication process are also analyzed in detail. The experimental results of all kinds of gratings are given and the analyses are also given in detail. This work is very useful for the replication of microstructure gratings with low cost and high throughput. 2. Applications of imprint in fabrication of microlens array. Microlens array is replicated with the lens size is from several microns to several hundred microns and are arranged in array. Microlens array is extensively used in various fields, such as beam shaping, interconnection of optical elements, optical information processing, and three dimensional imaging, etc. . Fabrication of microlens array using imprint technology is studied in this dissertation. The microlens array is fabricated by using traditional thermal reflow technology as a master. The microlens array is first transferred on an elastomeric mold using replica molding method, and then the elastomeric mold with microlens structure on its surface is imprinted on the glass substrate with UV curable polymer on it. After the UV glue was fully solidified, the final microlens array is formed on the UV curable polymer of glass substrate. The microlens array is tested and it has uniform focusing function. This technology has great potential for fabrication of polymer microlens array with low cost and high throughput. At last, the preliminary experimental results of micro cylindrical lens are given, which are fabricated by thermal reflow technology of photoresist. 3. Research of optical superresolution in optical storage technology. Optical storage density is directly related with the size of focused spot of optical pick up. The size of focused spot lies on the wavelength of laser and the numerical aperture of lens. Increasing numerical aperture and decreasing light wavelength will be ultimately limited due to the technical difficulty. In this dissertation, we studied the application of optical superresolution technology in read-only optical disk system. The experiment and simulation with ZEMAX has been done to verify the technology with the superresolution phase filter. The superresolution phase filters are designed and fabricated with the compressed central point ratio G of 0.982, 0.958, 0.929, and 0.898, respectively. The optical pick up with superresolution phase filter is assembled and tested. Among 20 optical pick up with superresolution phase filter, there are a few optical head that can get better results. The parameter of Jitter is larger than the original optical pick up. After simulation with ZEMAX, we find that the smaller compressed central light point can be obtained. The high assembled precision of superresolution phase filter is required. The off-center and tilt of superresolution phase filter can all make the focused effect get worse. To make superresolution phase filter for use in practice, the method to reduce aberration with high assembled precision should be studied in the future.
语种中文
源URL[http://ir.siom.ac.cn/handle/181231/15254]  
专题上海光学精密机械研究所_学位论文
推荐引用方式
GB/T 7714
王伟. 压印技术和光学超分辨的应用研究[D]. 中国科学院上海光学精密机械研究所. 2009.

入库方式: OAI收割

来源:上海光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。