中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Yb~(3+)掺杂多组份硅酸盐玻璃光谱性质研究及双包层光纤研制

文献类型:学位论文

作者戴能利
学位类别博士
答辩日期2003
授予单位中国科学院上海光学精密机械研究所
导师胡丽丽
关键词激光玻璃 玻璃光纤 物理性质 光谱性质
其他题名Spectroscopic of Yb~(3+)-doped multi-component silica glasses and double-cladding fiber
中文摘要本论文包括以下七部分:序言、文献综述、实验过程与理论、Yb3+掺杂多组份硅酸盐玻璃光谱性质的结果与讨论、Yb3+掺杂硅酸盐玻璃双包层光纤研制、Yb3+掺杂SPb玻璃微片激光探索、结论。论文首先在序言中介绍了发展高功率光纤激光器的目的和意义,然后根据国内外的研究现状提出开展本课题研究的依据和研究内容。在第二部分文献综述中详细介绍了Yb3+双包层光纤的研究历程,然后概述了涉及本课题的基础知识和Yb3十掺杂玻璃的研究结果,以及Yb3+光纤的制作工艺和影响光纤性能参数的因素。最后介绍了它们的应用领域。在论文第三部分实验过程与理论中描迷了实验方法、测试方法及过程,之后系统介绍了涉及Yb3+离子吸收截面(σabs),发射截面(σemi),自发辐射几率(Arad),潜在激光性能评估参数:激发态最小粒子数(pmin)饱和泵浦强度(蝙t)和最小泵浦强度(Imin)的计算方法。论文第四部分是本论文的核心,详细给出Yb3+在SAL玻璃体系:((65SiO2-25Al2O3-(9.4-x)La2O3-xYb2O3-O.5Sb2O3)),SB玻璃体系:((55+x)5102-(27-x)BZo3-18Na2O-lYb2O3),SBB玻璃体系:(6OSiO2-xBi2O3-(30-x)B2O3-2K2O-7Na2O-1Yb2O3),sPb玻璃体系:((65-x)SiO2-(21+x)PbO-lOK2O-4Na2o-xYb2O3,和65SiO2-21PbO-10K2O-4Na2O-xYb2O3),SGP玻璃体系:((65-x)SiO2-xGeO2-21PbO-10K2O-4NaO2)五个玻璃体系中的物理和光谱性质。结果表明:在SAL玻璃体系中,由于Yb3+在SAL中的团簇效应,随着Yb3+掺杂浓度从0.5mol%增加到2mol%,其峰值吸收截面从1.81pm2减小到1.01pm2,在1020nm处,其发射截面从0.51pm2减小到0.29pm2,不适宜做高浓度Yb3+掺杂材料;在SB玻璃体系中,SiO2-B2O3互变带来的折射率和密度变化很小,但是,吸收截面随着SiO2替代B2O3 后从1.82pm2减小到1Pm2,次峰发射截面由0.7pm2降到0.5pm2,当B2O3含量超过15mol%,其荧光寿命由于B203对OH-的吸收而只有不到1ms,SB玻璃只有在除水好的情况才能用作Yb3+掺杂激光材料;在SBB玻璃体系中,随着B2O3-RiZO3相互取代,当B2O3=15mol%时,Yb3+周围的配位场出现最不对称性,其峰值吸收截面和次峰发射截面出现极大值,分别为1.97pm2和0.81pm2。B2O3含量最高时,其2F5/2能级的Stark分裂值为518cm-1,而在Bi2O3全部替代B2O3时,其分裂值增大为769cm-1。玻璃的综合激光参数评估因子最大为0.37;在SPB玻璃体系中,通过改变SiO2-PbO组成比例和不同Yb3+掺杂浓度研究其光谱性质,并且研究了其低温光谱性质。用PbO替代SiO2对其吸收和发射截面影响不大,只是吸收波长移向长波长。在改变Yb3+离子浓度时,随着Yb3+浓度增大,其吸收截面没有明显改变,说明Yb3+在sPb玻璃中团簇效应不明显。从其低温光谱完整分析其Stark能级分裂,得出荧光衰减主要原因是Yb3+离子浓度和OH-的吸收。该玻璃的SFL因子为0.63,是一种较好的掺杂材料;在SGP玻璃体系中,通过调整SiO2-GeO2组成比例,得到在迄今为止多组份硅酸盐玻璃中最好白勺光谱性质。当SiO2=3Omol%,GeO2=3Omol%时,其峰值吸收截面为1.56Pm2,次峰发射截面为0.76Pm2,荧光寿命为1.62ms,储能因子Γm×σemi2取得极大值为1.25ms·pm2,SFL因子为0.85,创新性地解决多组份硅酸盐玻璃的光谱性能优化,是Yb3+掺杂光纤的合适基质材料。论文的第五部分研究了SPb玻璃光纤的拉制工艺。包括预制棒升温工艺,涂覆材料选择,涂覆功率,以及计算Yb3+双包层光纤界面损耗。成功拉出具有圆形和矩形内包层几何结构的硅酸盐玻璃双包层掺臆光纤。论文第六部分探索了Yb:SPb玻璃微片激光输出,由于其闽值功率高和玻璃损耗大未能获得激光输出,有待进一步实验研究。论文最后部分是全部实验的总结并指出了本论文工作的不足之处。
英文摘要This dissertation is composed of six sections including: introduction, literature summarizations, experiment procedure and basic theory, results and discussions for the physical and spectroscopy properties of Yb3:f-doped multi -component silicate glasses, study of Yb3+-doped double cladding glass fiber, exploring laser outputting for Yb:SPb glasses and general conclusions. Firstly, the purpose and significance for studying rare earth doped high power fiber laser are introduced in the preface. Then, the task of this dissertation has been proposed on the basis of foregoing studies. In section 2, the history of double cladding fiber laser is introduced in details. The basic knowledge and the foregoing results related to our task are summed up. Technologies for fabricating double cladding fiber using MCVD, the factors affecting the spectroscopy properties and its application fields are also presented in section 2. In section 3, experiment procedure and measurement are introduced in details. After that, the calculation for the absorption cross section (σ abS), stimulated emission cross section (σ emi), radiative decay rate (Arad), and the potential laser performance parameters( P min, ISat and Imin) are expatiated. As the core section of this dissertation, section 4 presents the results and discussions on physical and spectroscopy properties in various Yb + doped multi-component silicate glasses in details. The glasses matrix include: SAL glasses (65SiO2-25Al2O3-(9.4-x)-xYb2O3-0.5Sb2O3), SB glasses ((55+x)SiO2-(27-x)B2O3-18Na2O-lYb2O3), SBB glasses (60SiO2-xBi2O3-(30-x)B2O3-2K2O-7Na2O-lYb2C>3), SPb glasses ((65-x)SiO2-(21+x)PbO-10K2O-4Na2O-xYb2C>3 and 65SiO2-21PbO-l0K2O-4Na2O-xYb2O3), SGP glasses ((65-x)SiO2-xGeO2-21PbO-10K2O-4NaO2). For SAL glass matrix, due to the cluster effect of Yb3+ in glass, with the increase of Yb2O3 concentration from 0.5mol% to 2mol%, the peak absorption cross section (o abs2) decreases from 1.81 pm to 1.01pm , the sub-emission cross section( o emi2) decreases from 0.51pm2 to 0.29pm2. Therefore, high doping is impossible in SAL glass. For SB glass matrix, small change of reflection index and density are observed with SiO2 substitution for B2O3. However, sub-peak absorption cross section 0 ilbs2 and sub-peak stimulated emission cross section a emi2 decrease from 1.82 pm2 to 1 pm2, and 0.7 pm2 to 0.5pm2, respectively. The measured fluorescence lifetime( T m) is shorter than lms when the B2O3 content is over 15mol%. This is contributed to non-radiative transtion from OH- groups in SB glasses. For SBB glasses, with the substitution of Bi2O3 for B2O3, the 0 abs2 and 0 emi2 get maximum value which are 1.97pm2 and 0.81pm2 respectively while B2O3=15mol%. This phenomenon is explained by the high asymmetry network structure surrounding [YbOe] octahedron. Stark split of Yb ions is also changed with the substitution of Bi2O3 for B2O3, stark split value of 2Fs/2 energy level increases from 518cm"1 to 769cm"1 while Bi2O3 substitutes for B2O3 totally. In SBB glass, the maximum SFL(systematical factor of laser parameter) is 0.37. For SPb glasses, physical and spectroscopy properties especially the low temperature spectroscopy are explored with the change of SiO2, PbO components and the Yb2O3 concentrations. While PbO substitute for SiO2, the wavelength of peak absorption moves to longer wavelength. However, the 0 abs2 and o emi2 have no obvious change. The absorption coefficient increases proportionally with the increase of Yb2O3 concentration from 0.5mol% to 5mol%, this indicates that cluster effect of Yb3+ ions in SPb is very small. The exact stark split for Yb3+ in SPb glass can be analyzed from low temperature spectroscopy. The nonradiative decay rate increases with the increase of Yb3+ ion concentration. It is mainly caused by the interaction between residual OH" groups in glass and Yb3+ ions. Fluorescent decay rate is fast in high Yb3+ doping level at room temperature. At room temperature phonon energy helps OH" vibration band to bridge the energy gap between 2Fs/2 and 2F7/2 levels and speeds up the nonradiative decay rate of Yb3+ ions. For SGP glasses, we get the optimal spectroscopy properties though change the compositions of SiO2 and GeO2. In glass with 30mol% SiO2, 30mol%GeO2, 0 abs2 and o emi2, T m are 1.56pm , 0.76pm , 1.62ms, respectively. Its storaged energy factor( τ m X σ emi2) and SFL are 1.25ms o pm and 0.85, respectively. Yb3+ doped SGP glass is suggested as an excellent glass candidate for fiber laser application. In section 5, multi-model double cladding fiber drawn from Yb3+-doped Spb glass has been studied. Heating process for glass preform, selection of coating materials and compatible UV curing power are explored. A mode is presented for calculating the loss of interface of glass fiber. In section 6, due to the higher Imjn value and higher loss of Yb-doped SPb glasses, cw laser outputting can't be observed in micro-glasses laser experiment. In section 7, general conclusions of this disseration are presented.
语种中文
源URL[http://ir.siom.ac.cn/handle/181231/15392]  
专题上海光学精密机械研究所_学位论文
推荐引用方式
GB/T 7714
戴能利. Yb~(3+)掺杂多组份硅酸盐玻璃光谱性质研究及双包层光纤研制[D]. 中国科学院上海光学精密机械研究所. 2003.

入库方式: OAI收割

来源:上海光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。