掺稀土离子重金属氧化物玻璃中红外发光特性研究
文献类型:学位论文
作者 | 郭艳艳 |
学位类别 | 博士 |
答辩日期 | 2013 |
授予单位 | 中国科学院上海光学精密机械研究所 |
导师 | 张军杰 |
关键词 | 氟氧化物玻璃 碲酸盐玻璃 铋酸盐玻璃 3 μm中红外发光特性 |
其他题名 | Mid-infrared emission properties of rare-earth ions doped heavy metal oxide glasses |
中文摘要 | 自1960年7月由美国科学家Theodore H. Maiman第一次成功演示红宝石激光器以来,激光器和激光技术的发展突飞猛进。激光由于其单色性、方向性和相干性完全异于普通光而被广泛用于各个应用领域,并对当代科学、技术及社会发展产生重大影响。3 μm波段覆盖有大气传输窗口及许多重要分子的特征谱线,在医疗、环境监测、光通信及军事等领域有着重要的应用前景。目前国内外对3 μm波段发光的稀土离子掺杂材料的研究主要集中在晶体、氟化物和硫系玻璃中,对重金属氧化物玻璃的研究还较少。因此,本论文的研究目的是探索适合于中红外3 μm发光的稀土离子掺杂重金属氧化物玻璃,从而为获得新型3 μm光纤激光材料提供一定的理论基础和实验基础。 本论文共包含六个部分。 论文第一章为文献综述部分,首先对光纤激光器、稀土离子3 μm发光机理及玻璃基质材料特性进行了概述,继而提出本文的研究内容和思路。 论文第二章为实验方法、测试方法和理论计算部分,主要介绍氟化物、碲酸盐玻璃及铋酸盐玻璃的制备方法、物理化学性质测试、结构测试分析及光谱理论计算和分析方法等。 论文的第三章重点研究了Er3+离子掺杂氟氧化物玻璃的结构和光谱性质。通过成玻性能的分析,重金属氧化物(TeO2、GeO2、ZrO2等)引入至ZBLAN玻璃中仍可形成透明玻璃。随着TeO2的加入,ZBLAN玻璃的热稳定性和化学稳定性逐渐提高。通过对铒离子掺杂ZBLAN玻璃重金属氧化物引入前后光谱性质的研究发现TeO2的引入可明显增强Er3+离子的2.7 μm发光,TeO2含量为4 mol%时光谱达到最大值,约为未引入TeO2时的2倍,此时在FWHM保持不变的同时发射截面也得到提高。XRD光谱显示引入TeO2后玻璃中没有晶相析出。Raman光谱显示TeO2引入后玻璃基质声子能量并未产生明显改变。XPS光谱显示O离子引入后参与玻璃网络结构的组成,形成Zr−F、Zr−O、Te−F和Te−O键。引入的O离子通过改变Er3+离子的局域对称性和配位环境增强2.7 μm发光。当过量的O离子和Te离子引入时,玻璃中出现[TeO3]基团,该基团的高声子能量则对2.7 μm发光不利。因此在ZBLAN玻璃中掺入适量的TeO2有利于同时提高物化性能和光谱性能,有利于实现环境适应性强的高功率输出2.7 μm光纤激光。 论文的第四章重点研究了Er3+离子掺杂碲酸盐玻璃结构和光谱性质。首先研究了不同碲酸盐玻璃中Er3+离子的2.7 μm发光。在TeO2-Na2O(TN)、TeO2-GeO2-ZnO-K2O(TG)玻璃和TeO2-WO3-La2O3(TWL)玻璃中,Er3+离子单掺时均可获得2.7 μm发光。采用Judd-Ofelt理论计算Er3+离子在各玻璃中的自发辐射跃迁几率均较高(最大为59.42 s-1),依据2.7 μm发射光谱计算的受激发射截面均较大(最大为8.37×10-21 cm2)。其次研究了双掺情况下Er3+离子在碲酸盐玻璃中的2.7 μm发光性能。在TN玻璃中研究了Er3+/Nd3+离子共掺的2.7 μm发光性能及Nd3+离子和Er3+离子的能量传递过程。在该玻璃中Nd3+离子可明显提高对808 nm泵浦光的吸收并将能量传递给Er3+离子获得增强的2.7 μm发光,同时545 nm的上转换发光和1.5 μm的近红外发光有效的降低。在该玻璃中Er3+离子和Nd3+离子的最佳掺杂浓度比为1:0.5,在该掺杂浓度下Er3+离子可同时获得较强的2.7 μm发光和较弱的1.5 μm发光,有效降低Er3+离子2.7 μm发光的下能级粒子数,有利于在该玻璃中实现粒子数反转获得激光输出。在TG玻璃中分别研究了Er3+/Nd3+、Er3+/Tm3+和Er3+/Ho3+离子共掺在980 nm LD泵浦条件下的2.7 μm发光性能及其能量传递机理。通过对光谱及能级结构的分析表明:Nd3+、Tm3+和Ho3+离子均可通过降低Er3+:4I13/2能级的粒子数达到增强其2.7 μm发光的目的。在TWL玻璃中研究了Er3+/Yb3+离子共掺的2.7 μm发光性能及Yb3+离子和Er3+离子之间的能量传递过程。通过对吸收光谱及发射光谱的研究发现Yb3+离子和Er3+离子的最佳掺杂浓度比为3:0.5,此时获得最大的受激发射截面(6.05×10-21 cm2)。因此作为2.7 μm中红外发光的基质材料,3Yb3+/0.5Er3+掺杂的碲钨镧玻璃可以有效利用980nm的泵浦光并获得较强的光谱强度。最后研究了碲酸盐玻璃结构对Er3+离子2.7 μm发光性能的影响。在Er3+离子掺杂的TeO2-Na2O玻璃中,微晶化处理后Er3+离子2.7 μm发光显著增强,XRD检测晶体峰明显,晶相为Er2Te5O13,说明Er3+离子进入晶相中并对2.7 μm发光产生增强。在碲锗酸盐玻璃中研究了F离子对Er3+/Nd3+离子共掺碲酸盐玻璃2.7 μm发光的影响。通过对热稳定性、折射率、吸收和发射光谱、透过光谱和拉曼光谱的研究发现:1)F离子引入后会影响玻璃的转变温度,先降低后升高,ΔT却明显增加,即玻璃的热稳定性增加,成玻能力(KH)提高,折射率变化相反,先升高后降低;2)F离子引入后吸收光谱未发生明显改变, Judd-Ofelt光谱计算表明玻璃网络结构对称性和Er−O键的共价性均未明显改变,计算所得自发辐射跃迁几率降低,4I11/2和4I13/2能级寿命均有所提高,1.5 μm荧光寿命测试发现Nd3+离子对Er3+离子的能量转移效率最高达到81.5%;3)少量F离子引入时, 2.7 μm发光强度不变,随着F离子含量增加,2.7 μm荧光强度逐渐增强;4)F离子引入后玻璃在3000nm处透过率明显提高,αH (吸收系数)由未引入F离子之前的0.466提高至引入后最小值0.181,OH基团含量的减少非常有利于2.7 μm发光的增强;5)F离子引入后玻璃中的[TeO3]或[TeO4/3+1]转变为[Te(O,F)3]或[Te(O,F)4/3+1]基团,玻璃中同时存在BO(桥氧)、NBO(非桥氧)、BF(桥氟)和NBF(非桥氟)键,BF键的存在提高玻璃链状结构的稳定性,即玻璃热稳定性提高。以上结果显示F离子的引入有利于碲酸盐玻璃中Er3+离子2.7 μm发光。 论文的第五章重点研究了Er3+离子掺杂铋酸盐玻璃结构和光谱性质。首先研究了Er3+离子单掺Bi2O3-GeO2-Ga2O3-Na2O(BGG)玻璃2.7 μm的发光特性。该玻璃具有较好的热稳定性及较宽的红外透过范围(~5 μm)。在2.7 μm处透过率达到90%,而3.0 μm处OH基团吸收峰不明显。通过吸收光谱计算获得的自发辐射跃迁几率为65.26 s-1,由发射光谱计算得到Er3+离子2.7 μm处最大发射截面为10.8×10-21 cm2。其次研究了Er3+/Yb3+离子共掺杂BGG玻璃中2.7 μm的发光特性。Yb3+离子掺入后,980 nm处吸收强度明显增强,在980 nm处吸收截面增大至7.5×10-21 cm2;上转换发光、近红外发光以及中红外发光同时增强,说明Yb3+掺入后可有效吸收泵浦光并将能量传递给Er3+离子,在该玻璃中Er3+离子和Yb3+离子的最佳掺杂浓度比为1.0:0.2。根据吸收光谱和发射光谱分析Yb3+离子和Er3+离子能量传递过程,指出上转换发光增强的主要原因是Er3+离子在4I11/2和4I13/2能级的合作上转换或激发态吸收。基于该Er3+/Yb3+离子共掺时获得的较高的泵浦效率、较强的发光强度及较大的发射截面以及Yb3+离子和Er3+离子之间有效的能量传递,该玻璃作为2.7 μm中红外激光基质材料有较好的应用前景。此外还研究了Er3+/Pr3+离子共掺杂BGG玻璃中2.7 μm的发光特性。Pr3+离子掺入后吸收光谱在1.5 μm处出现明显的增强,为Pr3+离子跃迁至3F3,4能级产生的吸收。Pr3+离子的掺入可转移Er3+离子4I13/2能级的能量,从而获得增强的2.7 μm发光。通过荧光衰减曲线计算Er3+离子4I13/2能级到Pr3+离子3F3能级的能量转移效率高达96%,说明Pr3+离子可以有效的转移Er3+离子4I13/2能级能量,削弱下能级粒子数有利于达到粒子数反转,有利于使Er3+ 离子的2.7 μm发光更趋向于四能级系统,此过程对获得2.7 μm激光具有重要意义。 论文的第六章是本论文的结论部分,总结了文中的实验结果并指出研究中存在的不足之处和需要深入研究之处。 |
英文摘要 | Since the first Ruby Laser were obtained by Theodore H. Maiman (America), laser and laser techonology developed rapidly. Due to the good monochromaticity, directionality and coherence, laser has a significant effect on science, technology and society. 2.7 μm lasers overlap atmpspheric transmission window and characteristic absorption lines of CO2, H2O and other atmospheric interested molecules, then it have many applications in the area of medical treatment, environmental protection, optical communication and military. So far, there are many reports on rare earth ions doped materials for 2.7 μm emissions and lasers, such as crystal, fluoride glass, and chocologenide glass and few reports on heavy-metal oxide glass with rare earth ions doped materials for 3 m emissions and lasers were published. The oral of this dissertation is to investigate rare earth ions doped heavy metal glass that is suitable for 2.7 μm lasers fiber materials and to provide theoretical basis and experimental evidence for 2.7 μm lasers materials. This dissertation includes the following six chapters. In Chapter I, the developments of fiber laser are briefly introduced firstly. After that, light emitting mechanism and develop of rare earth ions in mid-infrared region are reviewed. Thirdly, the characteristic of glasses are summarized. Finally, the purpose and research content of the dissertation are proposed. In Chapter II, the experimental methods are introduced, including the preparation procedures of fluoride glasses, tellurite glasses and bismuthate glasses, physical and chemical properties measurement, spectroscopic properties measurements and theory analysis. In Chapter III, structure and optical properties of Er3+-doped ZBLAN glasses are studied. With the introduction of TeO2, GeO2 and ZrO2, ZBLAN glass still has good transparency. The introduced TeO2 improves the thermal stability and chemical durability. It can also improve the 2.7 μm emission in ZBLAN glass and the maximum emission intensity is achieved with 4 mol.% TeO2. In this case, the emission cross section is increased. Raman spectra show that there is no evident change in the phonon energy of ZBLAN glass with the introduction of TeO2. XPS spectra show that the introduced O onions participate in the network forming of glass and there are Zr-F, Zr-O, Te-F, Te-O bonds, which increases the 2.7 μm emission by changing the symmetrical characteristic surrounding erbium cations. When excess O onion and Te cations were introduced, the [TeO3] groups appear which is harmful to 2.7 μm emission. Thus, a proper introduction of TeO2 in ZBLAN can improve the thermal stability and chemical durability, as well as optical properties that are beneficial to achieve high power 2.7 μm fiber laser. In Chapter IV, a series of rare earth doped tellurite glasses are studied for 2.7 μm emission. Firstly, 2.7 μm emissions are obtained in Er3+-doped tellurite glasses, including TeO2-Na2O (TN), TeO2-GeO2-ZnO-K2O (TG) and TeO2-WO3-La2O3. All these glasses possess large spontaneous transition probability (Max, 59.42 s-1) and large emission cross section (Max, 8.37×10-21 cm2). Secondly, a series of rare earth ions co-doped tellurite glasses are investigated for 2.7 μm emission. Enhanced 2.7 μm emissions are obtained in Er3+/Nd3+ co-doped TN glasses with an 808 nm LD pumped. In Er3+/Nd3+ co-doped TN glasses, Nd3+ ions can improve the absorption of 808 nm LD pumping energy and can also deplete the energy of Er3+: 4I13/2 level, which is beneficial to achieve population inversion. Emission spectra show that co-doped Nd3+ ions can decrease the up-conversion and 1.5 μm emissions, as well as increase 2.7 μm emissions. The optimized concentration of Er3+ ions and Nd3+ ions is 1:0.5. Enhanced 2.7 μm emissions are obtained in Er3+/Nd3+, Er3+/Tm3+ and Er3+/Ho3+ co-doped TG glasses with a 980 nm LD pumped. Under the analysis of absorption spectra, emission spectra and energy levels of rare earth ions, we can find out that Nd3+, Tm3+ and Ho3+ ions can improve 2.7 μm emission of Er3+ ions by deplete the population of Er3+: 4I13/2 level. Intense 2.7 μm emissions are obtained in Er3+/Yb3+ co-doped TWL glasses with a 980 nm LD pumped. Absorption and emission spectra show that the Yb3+ ions improve 2.7 μm emissions of Er3+ ions by increase the population of Er3+: 4I11/2 level. The optimized concentration of Yb3+ and Er3+ ions is 3:0.5 which can effectively utilize the pumping energy. Finally, the effects of structure changes on 2.7 μm emissions are discussed in tellurite glasses. Enhanced 2.7 μm emissions are obtained in Er3+ doped TN glass-ceramic. After the heat treatment, Er2Te5O13 micro-crystalline are found in the glass by X-ray diffraction measurement. These results show that Er3+ ions enter in Er2Te5O13 micro-crystalline which increases the 2.7 μm emissions in TN glasses. With the introduced F ions, improved 2.7 μm emissions in Er3+/Nd3+ co-doped TG glasses are obtained. Combined the analysis of thermal stability, refractive index, absorption and emission spectra, transmittance spectra and Raman spectra, we can find out: (1) the introduced F ions will decrease firstly and then increase the transition temperature, the refractive index changes on the contrary. the value of ΔT increase with the presence of F ions, as well as the value of KH; (2) there is no obvious changes in absorption spectra and Judd-Ofelt parameters which indicate that the covalency between rare-earth ions and ligand anions and symmetry of network in glasses has no obvious changes. But, the spontaneous transition probability decreases while the lifetime of Er3+: 4I11/2 and 4I13/2 levels increase. Energy transfer efficiency between Nd3+ ions and Er3+ ions is up to 81.5%; (3) 2.7 μm emissions does not change obviously with a small amount of F ions and it increases with the concentration of F ions (>10 mol.%); (4) the transmittance of 3000 cm-1 increases with the introduced F ions and the absorption coefficient of OH groups decreases from 0.466 to 0.181, which is beneficial to 2.7 μm emission; (5) XPS spectra show that the introduced F ions participate in glass forming (from [TeO3] or [TeO4/3+1] to [Te(O, F)3] or [Te(O,F)4/3+1]). There are bridge oxygen(BO), non-bridge oxygen(NBO), bridge fluorine(BF) and non-bridge fluorine (NBF) in glasses which is favorable for good thermal stability. Thus, the introduced F ions can improve 2.7 μm emission and thermal stability in TG glass indicating that this glass might become an potential candidate for 2.7 μm laser materials. In Chapter V, a series of rare-earth doped bismuthate glasses with 3 μm emissions are prepared. Firstly, intense 2.7 μm emissions are obtained in Er3+ -doped BGG glasses. BGG glass possess good thermal stability (ΔT≥160 ℃) and broad transpancy (~5 μm). The transmittance at 2.7 μm is about 90% and the absorption band at 3 μm for OH group is not obvious. The spontaneous transition probability in Er3+ -doped BGG glasses reaches as high as 65.26 s-1, and the emission cross section is about 10.8×10-21 cm2. The advantageous spectroscopic characteristics of Er3+-doped BGG glasses together with the prominent thermal property indicate that BGG glass is an attractive candidate for 2.7 μm laser materials. Secondly, enhanced 2.7 μm emissions are obtained in Er3+/Yb3+ co-doped BGG glasses. With the introduction of Yb3+ ions, absorption cross section at 980 nm increase to 7.5×10-21 cm2. This result shows that the co-doped Yb3+ ions can effectively absorb the pumping energy and transfer to Er3+ ions and the optimized concentration of Yb3+and Er3+ ions are 1.0 and 0.2 mol.%. Combined the high pumping efficiency, intense 2.7 μm emission and large emission cross section, Er3+/Yb3+ co-doped BGG glasses possess unique advantage in application of 2.7 μm laser materials. Thirdly, improved 2.7 μm emissions are obtained in Er3+/Pr3+ co-doped BGG glasses. Absorption spectra show a large overlap at 1530 nm of Pr3+ ions and Er3+ ions. It can be attributed to the absorption of Pr3+: 3F3,4 and Er3+: 4I13/2 levels. The introduced Pr3+ ions can deplete the population of Er3+: 4I13/2 level and lessen the lifetime of 1.5 μm emissions. The peak intensity of 2.7 μm emissions increases about 3 times. The energy transfer efficiency between Pr3+ and Er3+ ions reaches to 96%. All these result indicates that the introduced Pr3+ ions can promote the population inversion between Er3+: 4I11/2 and 4I13/2 levels to achieve a four-level energy system at 2.7 μm. In Chapter VII, all results of present dissertation are concluded. And the improvements that should be done in the future are also mentioned. |
语种 | 中文 |
源URL | [http://ir.siom.ac.cn/handle/181231/15754] ![]() |
专题 | 上海光学精密机械研究所_学位论文 |
推荐引用方式 GB/T 7714 | 郭艳艳. 掺稀土离子重金属氧化物玻璃中红外发光特性研究[D]. 中国科学院上海光学精密机械研究所. 2013. |
入库方式: OAI收割
来源:上海光学精密机械研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。