中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
稀土离子在铋酸盐玻璃中的发光特性研究

文献类型:学位论文

作者赵国营
学位类别博士
答辩日期2013
授予单位中国科学院上海光学精密机械研究所
导师胡丽丽
关键词铋酸盐玻璃 稀土离子 近红外宽带发光 2~3 μm发光
其他题名The study on spectroscopic properties of rare earth ions doped bismuthate glasses
中文摘要铋酸盐玻璃是一种重金属氧化物玻璃,它以Bi2O3为主要的网络形成体,具有高折射率,高非线性折射率,优良的透红外性能,较低的熔化温度和玻璃转变温度,以及无毒性等优点。此外,铋酸盐玻璃还具有快的光响应速度,这些优势都使其在线性和非线性光学领域有着广泛的应用前景。另外,铋酸盐玻璃体系具有很低的声子能量,可以有效降低玻璃中稀土离子激发态的非辐射弛豫跃迁,而较高的折射率则有助于获得较强的辐射跃迁几率和受激发射截面。因此,铋酸盐玻璃还是一种优良的稀土离子发光介质。 掺铒光纤放大器(EDFA)的出现极大地促进了全球光纤通信网络的发展,但是工作在C波段的常规的EDFA平均带宽为1530~1565 nm,只有35 nm,制约了传输波长的信道数。随着因特网和多媒体信息的发展,人们对更多信道数和更宽的带宽提出了要求,因此研究可以在多波段工作的近红外宽带发光材料具有重要的意义。 2~3 μm中红外波段激光位于大气传输窗口内,与许多重要分子的特征谱线重叠,在光通信、医疗、环保和军事等领域有着广泛的应用。作为中红外激光输出的稀土离子掺杂介质对激光性能有着重要的影响。本论文重点研究了铋硅玻璃和铋酸盐玻璃中2~3 μm发光稀土离子的光谱性质,对基质玻璃成分和稀土离子浓度进行了探索和优化。结果表明稀土离子掺杂的铋酸盐玻璃中红外发光性能优异,有望成为2~3 μm激光输出的材料。 本论文共包含七章:前两章分别为文献综述和实验方法及理论基础,第三、四、五、六章为论文的核心内容,第七章为结论。 文献综述部分介绍了国内外铋酸盐玻璃的结构和物化性质的研究状况,综述了近红外宽带发光、2~3 μm稀土离子掺杂玻璃材料的研究进展。提出了本文的研究思路和内容。 第二章介绍了铋酸盐玻璃样品的制备方法、性质测试、光谱理论计算和分析方法。 第三章系统研究了Bi2O3-B2O3-TeO2(BBT)玻璃的形成区(B2O3≦40mol%),在BBT玻璃中,随着Bi2O3含量的增加,玻璃的密度和折射率逐渐增加。紫外透过截止边和红外透过截止边向长波方向移动。直接允许跃迁和间接允许跃迁带隙逐渐减小。通过光碱度理论分析了发生这种变化的原因。玻璃样品Raman和XPS光谱的分析表明:在Bi2O3含量增加过程中,碲氧多面体由[TeO4]双三角锥向[TeO3]三角锥的转变,硼氧多面体由[BO3]三角体向[BO4]四面体的转变。XPS光谱表明Bi5+可能存在于玻璃体系中。 第四章研究了Er3+/Tm3+共掺60Bi2O3–20SiO2–20Ga2O3(BSG)玻璃和60Bi2O3–20B2O3–20Ga2O3(BBG)玻璃的近红外宽带发光特性。当BSG玻璃中Er2O3和Tm2O3的含量分别为0.2 wt%和1.0wt%时,获得了覆盖S+C+L波段、荧光半高宽为165 nm的宽带荧光。研究了温度对宽带荧光强度和荧光寿命的影响。对比相同稀土离子浓度中BSG和BBG玻璃宽带发光的不同,研究了声子能量对近红外宽带发光的影响。 第五章研究了Bi2O3-SiO2-TiO2-Na2O-Li2O铋硅玻璃中Tm3+离子的1.8 μm发光特性。基质玻璃具有优良的抗析晶性能和红外透过能力。相比于传统的硅酸盐玻璃,声子能量较低的铋硅玻璃中1.8 μm的自发辐射几率和荧光寿命都得到了很大的提高。研究了 Tm3+/Yb3+共掺Bi2O3-GeO2-Na2O玻璃吸收光谱和荧光光谱,当Tm2O3和Yb2O3的浓度分别为0.4 cat%和3.2 cat%时,1.8 μm荧光强度达到最大,受激发射截面为7.7×10-21 cm2,Yb3+离子向Tm3+离子的能量传递效率为89%。 第六章以Bi2O3-GeO2-Na2O玻璃为基础,Er3+离子为激活离子,研究了铋酸盐玻璃中2.7 μm发光特性和光谱性质。980 nmLD泵浦下,获得了2.7 μm发光,受激发射截面为6.61×10-21cm2。研究了Er3+/Yb3+共掺铋酸盐玻璃,通过试验确定了获得最强2.7 μm发光的Er3+和Yb3+的浓度分别为0.5 cat%和3.5 cat%。Yb3+向Er3+的能量传递系数为7.32×10-40 cm6/s。表明Yb3+离子的引入对Er3+的2.7 μm发光起到了敏化作用。研究了Er3+/Nd3+共掺铋酸盐玻璃的光谱性质,发现在808nm泵浦下,Nd3+离子不但可以增强2.7 μm发光上能级的粒子数,而且能够减小2.7μm发光下能级的粒子数。研究了808 nm和980 nm泵浦下的Er3+/Tm3+共掺铋酸盐玻璃的光谱性质,在980 nm泵浦下,Tm3+离子的引入增强了Er3+离子的红绿上转换发光和2.7 μm发光,在2713 nm处的峰值发射截面达到了11.0×10-21 cm2。
英文摘要Bismuthate galss as a heavy metal oxide glasses is characterized by high refractive index, high nonlinearity refractive index, excellent infrared transmission, low melting temperature and glass transition temperature, and nontoxic to environment. The bismuthate glass has ultrafast optical response. These advantages indicate that the bismuthate glass is a promising material in linear and nonlinear optical fields. In addition, the low phonon energy and high linear refractive index of bismuthate glass are favorable to decrease nonradiative transition probabilities of excited states and to increase emission cross section, respectively. Therefore, the bismuthate glass is a good candidate matrix for rare erath ions doping. Erbium-doped fiber amplifier (EDFA) has promoted the development of the global fiber-optic communications network. With the development of the Internet and multimedia information, the conventional erbium-doped silicate fiber has difficulty in meeting information transportation requirements, because its average gain bandwidth is limited to be 35 nm (from 1530 to 1565 nm). In order to achieve the more multi-channel number and the wider bandwidth, developing materials which can realize broadband light emitting in near infrared range has become an interesting work. Mid-infrared laser around 2~3 μm is in the atmosphere transmission window, and it is close to the pronounced absorption band of many molecules. As a result, it has wide applications in the field of optical communication, medical treatment, environmental protection, military, and so on. Rare earth ions doped materials as a main component of mid-infrare lasers have a great influence on laser performance. The motivation of this study is to research the spectroscopic properties of rare earth ions doped bismuth silicate and bismuthate glasses, and choose the suitable matrix and determine the optimal concentration of rare earth ions. The results demonstrate that the rare earth ions doped bismuthate glass with excellent spectroscopic properties can be a good candidate as 2~3 μm laser materials. This dissertation consists of the following seven chapters. The first two chapters are literature summarization, experimental methods and theoretical calculation. The chapters 3 to 6 are main parts and last chapter is conclusion. In chapter 3, the glass formation region of Bi2O3–B2O3–TeO2 (BBT) ternary system with B2O3≤40 mol% is studied. The BBT glasses have large glass forming area at high Bi2O3 content. The density, refractive index, transmittance cut-off edges in ultraviolet and mid-infrared region, as well as direct allowed transition and indirect allowed transition increase with increase of Bi2O3 content. The optical basicity is adoped to analyse these changes. Raman spectra and XPS spectra show that, with the increase of Bi2O3 content, [TeO4] trigonal bipyramidals and [BO3] trigonal are converted into [TeO3] trigonal [BO4] tetrahedral. The existence of Bi5+ has been proved by XPS spectra in bismuthate glass. In chapter 4, the emission characteristics of Er3+/Tm3+ codoped 60Bi2O3–20SiO2–20Ga2O3 (BSG) glass and 60Bi2O3–20B2O3–20Ga2O3 (BBG) glass are investigated under 800 nm laser diode excitation. A broadband emission from 1350 to 1650 nm with a full width at half maximum (FWHM) around 165 nm is obtained in 0.2 wt% Er2O3 and 1.0 wt% Tm2O3 co-doped BSG glass. The influence of temperature and phonon energy on near infrared broadband emission is studied. In chapter 5, the emission properties around 1.8 μm in Tm3+ doped Bi2O3-SiO2-TiO2-Na2O-Li2O glass have been investigated. The reduction of phonon energy of bismuth silicate glass is beneficial to high radiative transition probability and long fluorescence lifetime of 1.8 μm emission. The spectral properties of Yb3+/Tm3+ co-doped bismuth germanate glass with different dopant concentrations are investigated. The emission cross-section of 1.8 μm reaches 7.7×10-21 cm2 in 0.4 cat% YbO1.5 and 3.2 cat% TmO1.5 co-doped bismuthate glass. The energy transfer efficiency from Yb3+ to Tm3+ is calculated to be 89%. In chapter 6, a series of Er3+ singly doped and Er3+-R3+(R=Yb, Nd, Tm) codoped Bi2O3-GeO2-Na2O glasses are prpeared. Under 980 nm LD pumping, the emission- cross section at 2.7 μm reaches 6.61×10-21cm2 in Er3+ doped bismuthate glass. The largest emission intensity of 2.7 μm is achieved when the contents of Yb3+ and Er3+ are 3.5 catl% and 0.5 cat%, respectively. The energy migration coefficient from Yb3+ to Er3+ is 7.32×10-40 cm6/s, indicating Er3+ has been successfully sensitized by Yb3+ in this glass. The spectroscopic properties of Er3+/Nd3+ codoped bismuthate glass are investigated. The results indicate that the introduction of Nd3+ can not only improve the population of Er3+:4I11/2 level but also quenches the Er3+:4I13/2 level. With 808 nm and 980 nm LD exciation, the emission characteristics of Er3+/Tm3+ codoped bismuthate glass are studied. It is found Tm3+ behaves as an efficient sensitizer for both visible light upconversion emission and 2.7 μm emission of Er3+ upon 980 nm pumping, and the emission cross section is up to 1.10×10-20 cm2 at 2713 nm.
语种中文
源URL[http://ir.siom.ac.cn/handle/181231/15759]  
专题上海光学精密机械研究所_学位论文
推荐引用方式
GB/T 7714
赵国营. 稀土离子在铋酸盐玻璃中的发光特性研究[D]. 中国科学院上海光学精密机械研究所. 2013.

入库方式: OAI收割

来源:上海光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。