中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
积分球冷原子钟的关键技术研究

文献类型:学位论文

作者孟艳玲
学位类别博士
答辩日期2014
授予单位中国科学院上海光学精密机械研究所
导师刘亮
关键词激光冷却 全同光场冷却 原子频标 一体化。
其他题名The Key Technologies of Integrating Sphere Cold Atom Clock
中文摘要本论文主要介绍了作者在攻读博士研究生期间的工作,包括积分球内冷原子团形状的操控,积分球和微波腔一体化的实现,以及小型化积分球冷原子钟的设计工作等。 论文第一章为引言,第二章介绍了激光冷却原子技术,包括光场对原子的作用力和积分球冷却的基础知识。第三章主要介绍了原子频标技术的基础知识,包括原子钟的基本控制原理、鉴频信号的获得、振幅噪声和频率噪声的特点。 论文第四章主要介绍了积分球内冷原子团形状的操控。积分球内的光场分布是影响冷原子分布的重要因素,而冷却光的注入位置则会直接影响到积分球内的光场分布,因此可以通过改变冷却光的注入位置来控制积分球内的冷原子团形状。通过这种方法分别实现了对柱形及球形积分球内冷原子团形状的操控。 论文第五章主要介绍了积分球微波腔一体化的实现。使微波腔同时具有积分球冷却原子的作用非常重要,首先积分球微波腔一体化可以简化原本复杂的系统,体积小、重量轻;其次,常规的积分球由涂覆涂料的石英球构成,涂料对微波有较强的吸收作用。将涂料积分球放置在微波腔内会显著降低微波腔的品质因素Q,恶化腔内电磁场分布。一体化后微波腔将同时担任积分球的作用,不需要使用漫反射涂料,也就不会出现Q值衰减及场型畸变,均匀的场分布能增加钟跃迁信号的信噪比和对比度;最后,一体化的积分球微波腔为全金属结构,稳定性及可靠性非常高。本章从一体化的论证、柱形微波腔的设计仿真和实现再到一体化的最终完成逐步介绍一体化的实现过程。为小型化积分球冷原子钟打下基础。 论文第六章主要介绍了小型化积分球冷原子钟的设计。利用微波腔和积分球一体化装置,设计了一套集成化的积分球冷原子钟系统。本章从物理系统的C场及磁屏蔽、冷却光注入方式、集成化的探测光路、以及集成化的光学系统等各个方面介绍了集成化的积分球冷原子钟系统。目前物理系统已经加工完成,光学系统的选型、采购也已经完成,即将开始下一步的安装、调试工作。 论文第七章介绍了对实验室现有的积分球原子钟系统进行优化的一些工作。主要包括微波腔温控的重新调整、Digilock 110稳频模块的使用、磁屏蔽的优化及获得的初步的闭锁结果。另外还介绍了Raman-Ramsey实验的一些光路和机械结构方面的准备工作。 第八章为总结和展望。
英文摘要The content in this thesis mainly include three topics. The first topic is the shape controlling of the atomic cloud in the integrating sphere, the second topic is about the integration of integrating sphere and microwave cavity, and the third topic is the design of the compact cold atom clock based on integrating sphere. Foreword is presented in chapter 1. The basic knowledge about laser cooling neutral atoms, especially integrating sphere cooling is discussed in chapter 2. The basic knowledge of atomic frequency standard technology is discussed in chapter 3, especially the control theory, the characterization of amplitude and the frequency noise. The shape controlling of atomic cloud in the integrating sphere is presented in chapter 4. The light intensity distribution in the integrating sphere is the key factor that affects the distribution of the cold atom cloud. And the injection of the cooling light will influence the homogeneity of the light field in the sphere. Then the atomic cloud can be controlled by changing the injection place of the cooling beams. The cold atomic cloud both in cylindrical cavity and spherical cavity are controlled by the method mentioned above. The integration of integrating sphere and microwave cavity is presented in chapter 5. It’s very important for the microwave cavity to function as an integrating sphere. The reasons are listed as follows. Firstly, the integration can simplify the setup to make it smaller in volume and lighter in weight. Secondly, the conventional integrating sphere is made by quartz and coated by paintings with high reflectivity coefficient which will decrease the Q factor and deteriorate the magnetic-field of the microwave cavity. While without using the coating, the integration design won’t affect the performance of the microwave cavity, which will increase the signal to noise ratio and contrast of the clock signal. Finally, the all-metal construction of the integration will strengthen its reliability and robustness. The design, simulation, measurement of the cavity for performance of microwave cavity and cooling cavity are presented. The realization of the integration of the cavity prepares for the compact integrating sphere. The design of the compact cold atom clock based on integrating sphere is presented in chapter 6. A compact cold atom clock is designed based on the integration cavity. The physical package which includes the C-field, magnetic shielding, the injection scheme of the cooling light, the optical path and mechanical design for the probe beam and collection of TOF fluorescence are presented. Then the optical package which provides the laser beams is introduced. The machining work for the physical package and the purchase for the optical package have been finished at the moment, and the installation work is to be carried out. The improvement work for the integrating sphere clock in the lab is presented in chapter 7. The work features on the temperature control of microwave cavity, the using of the new frequency stabilization module Digilock 110, and the fix work for the magnetic shielding. In addition, the preparation work for the Raman-Ramsey experiment including the design work of optical path and mechanical structure is introduced. Finally, a summary of this paper and prospects are presented in chapter 8.
语种中文
源URL[http://ir.siom.ac.cn/handle/181231/15874]  
专题上海光学精密机械研究所_学位论文
推荐引用方式
GB/T 7714
孟艳玲. 积分球冷原子钟的关键技术研究[D]. 中国科学院上海光学精密机械研究所. 2014.

入库方式: OAI收割

来源:上海光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。