中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
相位分辨干涉光谱调制技术研究

文献类型:学位论文

作者裴卓然
学位类别硕士
答辩日期2016
授予单位中国科学院上海光学精密机械研究所
导师刘军
关键词相位分辨干涉光谱调制 液晶空间光调制器 频谱相位 4f结构
其他题名Investigations of Phase Resolved Interferometric Spectral modulation
中文摘要飞秒激光脉冲拥有超短的脉冲宽度和极高的峰值功率,因此在强场激光物理,超快激光光谱,非线性显微光学等方面获得了广泛应用。飞秒激光脉冲的频谱形状和相位分布直接决定了脉冲特性。因此,需要可靠的手段来对飞秒激光脉冲的频谱相位进行测量和整形。 本文主要研究了相位分辨干涉光谱调制技术(Phase Resolved Interferometric Spectral Modulation, PRISM),在已知的飞秒激光脉冲相位测量技术中,相位分辨干涉光谱调制和多光子脉冲内干涉相位扫描(Multi-photon Intra-pulse Interference Phase Scan, MIIPS)是仅有的两种既能够测量又可以补偿脉冲频谱相位的方法。与MIIPS技术相比,PRISM技术实现难度相对较低,适用的光谱范围更宽,而且能够应用到二维波前相位测量和整形技术中。这对于飞秒化学,非线性显微光学成像等领域的相关研究有着重要意义。 本论文的主要研究内容和创新成果如下: 详细讨论了PRISM技术的基本原理,并编写了相应的数值模拟程序。构建了三种不同的飞秒激光脉冲模型,并使用PRISM技术对这三种模型进行了频谱相位测量和整形补偿。重点讨论了在PRISM技术实施过程中,脉冲时频域特性的演化情况。同时初步总结了脉冲频谱相位对PRISM强度谱的影响,包括如何从强度谱中判断脉冲是否接近傅里叶变换极限条件。作为验证PRISM技术可行性的手段,文中简述了MIIPS技术的基本理论和相位重建算法。 简述了液晶空间光调制器SLM-640d的基本工作原理;讨论了常用的4f激光脉冲整形装置的基本架构和搭建细节。同时在LabVIEW平台上开发出了一套完整的自动化测控程序,可用来控制SLM-640d和光纤光谱仪完成信号调制、光谱采集和数据分析过程。 搭建了一套同时适用于PRISM和MIIPS技术的飞秒脉冲相位测量与整形系统。首先利用PRISM技术对中心波长≈800nm,重复频率84MHz,谱宽约60nm的飞秒激光脉冲进行了频谱相位测量和整形。为了验证PRISM技术的可行性,我们使用MIIPS技术对待测脉冲进行了同步测量,二者的实验结果基本吻合。这一套装置以及PRISM技术将在非线性光学显微成像,脉冲整形等众多领域发挥重要作用。
英文摘要Femtosecond laser pulse is widely applied in many scientific fields such as high fields laser physics, ultrafast laser spectroscopy and nonlinear microscope imaging, due to its ultra-short pulse width and peak power. The temporal properties of a femtosecond laser pulse is completely determined by its spectral amplitude and phase. Therefore, it needs some robust methods to measure the temporal profile of a femtosecond laser pulse. In this paper, Phase Resolved Interferometric Spectral Modulation (PRISM) is investigated. As we known, PRISM and Multi-photon Intra-pulse Interference Phase Scan (MIIPS) are the only two methods which can measure and compensate spectral phase of a femtosecond laser pulse at the same time. Compared with MIIPS, PRISM can be easily implemented and applied to much wider spectral range. Furthermore, PRISM can be used to measure and compensate two dimensional wavefront phase, which is very important for femtosecond chemistry, nonlinear microscope imaging and other relevant scientific fields. The main contents of this paper are list as follows: Firstly, a detailed theoretical analysis and a numerical simulation is made based on the method. We construct three kinds of femtosecond laser pulse modes, then applies PRISM to measure and compensate the spectral phase of these pulses. The time and frequency properties of these pulses determined by PRISM are emphasized. The relationship of power spectrum obtained by PRISM and spectral phase is investigated and can be used to judge the fourier transformation limitation condition of a femtosecond laser pulse. As the confirmation method of PRISM, the basic principle and spectral phase reconstruction algorithm is introduced briefly. The basic principle of liquid crystal spatial light modulator SLM-640d is studied briefly. The process of how to set up a common 4f pulse shaper is discussed. Home-made LabVIEW program together with a fiber spectrometer are used to control the SLM-640d and realize signal modulation, spectrum acquisition and data analysis. We set up a femtosecond laser pulse measurement and compensation system based on both PRISM and MIIPS. A femtosecond laser pulse, whose spectral width is 60nm, centered at 800nm and has a repetition of 84MHz, is successfully measured by the PRISM method. We also use the result of measurement to compensate spectral phase of the laser pulse. To verify the feasibility and accuracy of PRISM, we also use MIIPS to measure the same femtosecond laser pulse. The results obtained by the two methods are in accord with each other well. This setup system will be useful in many scientific fields, such as nonlinear microscope imaging and pulse shaping etc.
语种中文
源URL[http://ir.siom.ac.cn/handle/181231/16955]  
专题上海光学精密机械研究所_学位论文
推荐引用方式
GB/T 7714
裴卓然. 相位分辨干涉光谱调制技术研究[D]. 中国科学院上海光学精密机械研究所. 2016.

入库方式: OAI收割

来源:上海光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。